Answer:
The new pressure is 53.3 kPa
Explanation:
This problem can be solved by this law. when the volume remains constant, pressure changes directly proportional as the Aboslute T° is modified.
T° increase → Pressure increase
T° decrease → Pressure decrease
In this case, temperature was really decreased. So the pressure must be lower.
P₁ / T₁ = P₂ / T₂
80 kPa / 300K = P₂/200K
(80 kPa / 300K) . 200 K = P₂ → 53.3 kPa
<span>In H2CO, C is bonded to H, H and O. Write down the valence electrons of each element.
2 H = 1x 2 = 2.
C= 4
O = 6
Total 12 </span>
Answer:
molality of sodium ions is 1.473 m
Explanation:
Molarity is moles of solute per litre of solution
Molality is moles of solute per kg of solvent.
The volume of solution = 1 L
The mass of solution = volume X density = 1000mL X 1.43 = 1430 grams
The mass of solute = moles X molar mass of sodium phosphate = 0.65X164
mass of solute = 106.6 grams
the mass of solvent = 1430 - 106.6 = 1323.4 grams = 1.3234 Kg
the molality = 
Thus molality of sodium phosphate is 0.491 m
Each sodium phosphate of molecule will give three sodium ions.
Thus molality of sodium ions = 3 X 0.491 = 1.473 m
5.6L of O2 means we have 0.25 moles of O2.
As, 1 mole has 6.023*10^23 molecules,
0.25 moles of O2 will have 0.25*6.023*10^23 molecules=1.50575*10^23 molecules
and as 1 molecule of O2 has 2 atoms, so, 1.50575*10^23 molecules will have 2*1.50575*10^23 atoms=3.0115*10^23 atoms of O.
In an exothermic reaction, heat is transferred to the surrounding.
Hope this helps, have a great day ahead!