I believe it can be warm because usually the surface below us is warm itself, causing the air to be warm as well. The temperature can vary as well
Answer:
24.9%
Explanation:
According to this question, mole fraction of NaCl in an aqueous solution is 0.0927. This means that the mole percent of NaCl in the solution is:
0.0927 × 100 = 9.27%
Let's assume that the solution contains water (solvent) + NaCl (solute), hence, the mole fraction of water will be;
100% - 9.27% = 90.73%
THEREFORE, it can be said that, NaCl contains 0.0927moles while H2O contains 9.073moles
N.B: mole = mass/molar mass
Given the Molar Mass
NaCl: 58.44 g/mol
H2O: 18.016 g/mol
For NaCl;
0.0927 = mass/58.44
mass = 0.0927 × 58.44
5.42g
For H2O;
9.073 = mass/18.016
mass = 9.073 × 18.016
= 16.35g
Total mass of solution = 16.35g + 5.42g = 21.77g
Mass percent of NaCl = mass of NaCl/total mass × 100
% mass of NaCl = 5.42g/21.77g × 100
= 0.249 × 100
= 24.9%
<span>Answer: 100 ml
</span>
<span>Explanation:
1) Convert 1.38 g of Fe₂S₃ into number of moles, n
</span>i) Formula: n = mass in grass / molar mass
<span>
ii) molar mass of </span><span>Fe₂S₃ =2 x 55.8 g/mol + 3 x 32.1 g/mol = 207.9 g/mol
</span>
iii) n = 1.38 g / 207.9 g/mol = 0.00664 moles of <span>Fe₂S₃
</span>
<span>2) Use the percent yield to calculate the theoretical amount:
</span>
<span>65% = 0.65 = actual yield/ theoretical yield =>
</span>theoretical yield = actual yield / 0.65 = 0.00664 moles / 0.65 = 0.010 mol <span>Fe₂S₃</span><span>
3) Chemical equation:
</span>
<span> 3 Na₂S(aq) + 2 FeCl₃(aq) → Fe₂S₃(s) + 6 NaCl(aq)
4) Stoichiometrical mole ratios:
</span>
<span>3 mol Na₂S : 2 mol FeCl₃ : 1 mol Fe₂S₃ : 6 mol NaCl
5) Proportionality:
</span>2moles FeCl₃ / 1 mol Fe₂S₃ = x / 0.010 mol Fe₂S₃
<span>
=> x = 0.020 mol FeCl₃
6) convert 0.020 mol to volume
</span>
<span>i) Molarity formula: M = n / V
</span>
<span>ii) V = n / M = 0.020 mol / 0.2 M = 0.1 liter = 100 ml
</span>