Answer:
0.54 mole of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2CH3OH + 3O2 —> 2CO2 + 4H2O
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Finally, we shall determine the number of mole of water (H2O) produced by the reaction of 0.27 moles of CH3OH. This can be obtained as follow:
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Therefore, 0.27 moles of CH3OH will react to produce = (0.27 × 4)/2 = 0.54 mole of H2O.
Thus, 0.54 mole of H2O is produced from the reaction.
The vapor pressure of water at 50ºC will be greater than that at 10ºC because of the added energy and thus greater movement of the water molecules. If one knows the ∆Hvap at a given temperature, one can calculate the vapor pressure at another temperature. This uses the Clausius-Clapeyron (sp?) equation. It turns out the vapor pressure of water at 10º is 9.2 mm Hg, and that at 50º is 92.5 mm Hg.
The 1st law of thermodynamics doesn't specify that matter can be created nor destroyed, but that the total amount of energy in a closed system cannot be created nor destroyed though it can be changed from one form to another.
<u>Answer:</u> Boyle's law states that gas volume is inversely proportional to pressure.
<u>Explanation:</u>
Boyle's law is one of the law used to determine the Ideal Gas equation.
This law states that pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles
Mathematically,
(at constant temperature and number of moles)
The above expression can also be written as:

where,
are initial pressure and volume of the gas
are final pressure and volume of the gas
Hence, Boyle's law states that gas volume is inversely proportional to pressure.
Answer:
false
Explanation:
because it's just a physical change, the matter won't be changed.
Hope this might help you! I don't know if this is going to be right on everything, but it's a anwser