Buckyball or buckminster fullerene is the third allotrope of carbon. It contains 60 carbons which are arranged in the five and six membered rings. Buckyball is the cluster of carbon atoms which are arranged in spherical shape and it forms a hollow cage.
The physical properties are:
Buckyball is made up of huge number of molecules but giant covalent bond is not exist.
The forces between the individual buckyballs are weak intermolecular forces.
The substances which are made up of buckyballs has low melting point in comparison to other allotropes of carbon as low energy is required to overcome theses intermolecular forces.
The substances which are made up of buckyballs is slippery in nature.
The solutions of buckminster fullerene are deep purple in color and upon evaporation brown residue is obtained.
Buckyball is soft in comparison to graphite and when it is compressed to less than 70 percent of its volume then, it converts into superhard form of diamond.
The mass of melted gold to release the energy would be 3, 688. 8 Kg
<h3>How to determine the mass</h3>
The formula for quantity of energy is given thus;
Q = n × HF
Where n represents number of moles
HF represents heat of fusion
To find the number of moles, we have
235.0 = n × 12.550
number of moles =
= 18. 725 moles
Note that molar mass of Gold is 197g/ mol
Let's note that;
Number of moles = mass/ molar mass
Mass = number of moles × molar mass
Mass = 18. 725 × 197
Mass = 3, 688. 8 Kg
Thus, the mass of melted gold to release the energy would be 3, 688. 8 Kg
Learn more about molar heat of fusion here:
brainly.com/question/15634085
#SPJ1
False. A mixture represents elements or molecules which are not chemically combined.
An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms. Hope this helps!!!
Answer:
mgh is the formula for potential energy