The arrangement of the solutions based on their absorption from highest frequency to lowest frequency :
b.
> c.
> a.NaCl
<h3>What is absorption frequency?</h3>
- The frequency of the molecular vibration that led to the absorption is the same as the absorption frequency of a basic IR absorption band.
- In a way, an emission spectrum is the opposite of an absorption spectrum.
- The discrepancies in the energy levels of each chemical element's orbitals correspond to absorption lines for each chemical element at various particular wavelengths.
- Therefore, it is possible to identify the constituents in a gas or liquid using its absorption spectrum.
- Absorption spectroscopy is most frequently used to measure infrared, atomic, visible, ultraviolet (UV), and x-ray waves.
Learn more about Absorption frequency here:
brainly.com/question/5032775
#SPJ4
Answer:
A hurricane can cause extreme damage to the biosphere and the geosphere. A hurricane can leave water standing therefore sinking itself into the geosphere. The biosphere can be permanently effected because it can kill, injure, and destroy the biosphere and what the biosphere creates (buildings, parks).
Explanation:
If you start with 0.30 m Mn₂ , at 12.5 pH, free Mn₂ concentration be equal to 4.6 x 10⁻¹¹ m
Initial molarity of Mn₂ = 0.30 M
Final molarity of Mn₂ = 4.6 x 10⁻¹¹
pH = ?
Ksp [Mn(OH)₂] = 4.6 x 10⁻¹⁴ (standard value)
Write the ionic equation
Mn(OH)₂ → Mn⁺² + 2OH⁻
[Mn⁺²] = 4.6 x 10⁻¹¹
We will calculate the concentration of OH⁻ by using Ksp expression
Ksp = [Mn⁺²][OH-]²
[Mn⁺²][OH⁻]² = 4.6 x 10⁻¹⁴
[OH⁻]² = 4.6 x 10⁻¹⁴ / 4.6 x 10⁻¹¹
[OH⁻]² = 10⁻³
[OH⁻] = (10⁻³)¹⁽²
[OH⁻] = 0.0316 M
Calculate the pOH
pOH = -log [OH⁻]
pOH = -log [0.0316]
pOH = 1.5
Now calculate pH
pH = 14 - pOH
pH = 14 - 1.5
pH = 12.5
You can also learn about molarity from the following question:
brainly.com/question/14782315
#SPJ4
Any compound with multiple covalent bonds
Answer:
The charge of an atom is the number of protons minus the number of electrons.