Actually each molecule of Hb can bind four oxygen
molecules. So given 1 x 10^6 Hb, so there are 4 x 10^6 binding sites available.
If only 50% of the Hb are bound, so this means
that 2 x 10^6 binding sites are occupied by O2. However we must remember that hemoglobin
binding is an all-or-nothing phenomenon. Meaning that each molecule of Hb binds
four molecules of oxygen or zero at all.
<span>If 23% is saturated, so the number of binding
sites occupied is 0.92 x 10^6 binding sites or 9.2 x 10^5 binding sites.</span>
Weed and water and maybe cheese sticks
<span>The number of electrons in an atom's outermost valence shell governs its bonding behavior.
In N</span>₂, three electrons are being shared by each nitrogen atom, making a total of 6 shared electrons.
In CCl₄, 4 electrons are being shared by each carbon atom and 1 electron is being shared by each chlorine atom
In SiO₂, 4 electrons are being shared by each silicon atom and 2 electrons are being shared by each oxygen atom.
In AlCl₃, 3 electrons are being shared by each aluminum atom and 1 electron is being shared by each Cl atom
In CaCl₂, 2 electrons are lost by the calcium atom and 1 electron is gained by each chlorine atom
In LiBr, 1 electron is lost by the lithium atom and 1 electron is gained by the bromine atom
The equilibrium constant (Kc) is the product of the equilibrium concentrations of the products raised to their corresponding stoichiometric coefficients divided by the reactants as well. In this case the equilibrium concentration of Cl2 which also applies to SO2 is 1.3x10^-2. The final equilibrium concentration of SO2Cl2 is 9x10^-3. Kc is then equal to 0.0188.
PH scale is used to determine how acidic, basic or neutral a solution is
pH can be calculated using the H₃O⁺
ph can be calculated as follows
pH = - log[ H₃O⁺]
[H₃O⁺] = 1 x 10⁻⁹
pH = - log [1 x 10⁻⁹]
pH = 9
pH of solution is 9