1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
11

• How much work isrequired to lift a 2kgobject 2m high?​

Physics
1 answer:
pychu [463]3 years ago
7 0

Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh

The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)

:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️

Explanation:

You might be interested in
Light of a given wavelength is used to illuminate the surfacce of a metal, however, no photoelectrons are emitted. In order to c
Jlenok [28]

Answer:

B. use light of a shorter wavelength.

Explanation:

We know that

E= \frac{hc}{\lambda}

h= plank's constant

c= speed of light

λ= wavelength of the incident light

so, in order to have sufficient energy for for the emission of electron, the incident's radiation must have λ small enough.

B. use light of a shorter wavelength.

6 0
3 years ago
RC time constant circuit if R 50 KOC-21 a TOSS c. 1.05 s . what is the expected RC value b. 10.55 d. 0.105 s
Afina-wow [57]

Answer:

Time constant of RC circuit is 0.105 seconds.

Explanation:

It is given that,

Resistance, R=50\ K\Omega=5\times 10^4\ \Omega

Capacitance, C=2.1\ \mu F=2.1\times 10^{-6}\ F

We need to find the expected time constant for this RC circuit. It can be calculated as :

\tau=R\times C

\tau=5\times 10^4\times 2.1\times 10^{-6}

\tau=0.105\ s

So, the time constant for this RC circuit is 0.105 seconds. Hence, this is the required solution.

7 0
3 years ago
A 31.7 kg kid initially at rest slides down a frictionless water slide at 53.2 degrees, how fast is she moving in 3.45 s later?
Murrr4er [49]

Answer:

34.55 m/s

Explanation:

8 0
3 years ago
On the sonometer shown below, a horizontal cord of length 5 m has a mass of 1.45 g. When the cord was plucked the wave produced
Korolek [52]

Answer:

(a) T = 0.015 N

(b) M = 1.53 x 10⁻³ kg = 1.53 g

Explanation:

(a) T = 0.015 N

First, we will find the speed of waves:

v =f\lambda

where,

v = speed of wave = ?

f = frequency = 120 Hz

λ = wavelength = 6 cm = 0.06 m

Therefore,

v = (120 Hz)(0.06 m)

v = 7.2 m/s

Now, we will find the linear mass density of the coil:

\mu = \frac{m}{l}

where,

μ = linear mass density = ?

m = mass = 1.45 g = 1.45 x 10⁻³ kg

l = length = 5 m

Thereforre,

\mu = \frac{1.45\ x\ 10^{-3}\ kg}{5\ m}\\\\\mu = 2.9\ x\ 10^{-4}\ kg/m

Now, for the tension we use the formula:

v = \sqrt{\frac{T}{\mu}}\\\\7.2\ m/s = \sqrt{\frac{T}{2.9\ x\ 10^{-4}\ kg/m}}\\\\(51.84\ m^2/s^2)(2.9\ x\ 10^{-4}\ kg/m) = T

<u>T = 0.015 N</u>

<u></u>

(b)

The mass to be hung is:

T = Mg\\\\M = \frac{T}{g}\\\\M = \frac{0.015\ N}{9.8\ m/s^2}\\\\

<u>M = 1.53 x 10⁻³ kg = 1.53 g</u>

4 0
3 years ago
PLEASEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
horsena [70]
It will be cloudy and there will be rain.


Hope this helps
5 0
3 years ago
Read 2 more answers
Other questions:
  • The basketball coach tells his team to run sprints back and forth across the court, which is 30 m long. They start at the left e
    5·1 answer
  • A man drops a rock into a well. (a) the man hears the sound of the splash 2.90 s after he releases the rock from rest. the speed
    7·1 answer
  • A diver springs upward from a board that is 3.90 m above the water. At the instant she contacts the water her speed is 13.2 m/s
    11·1 answer
  • Which of the following is the primary function of groundwater?
    9·2 answers
  • When water is boiled at a pressure of 2.00 atm, the heat of vaporization is 2.20×106J/kg2.20×10
    13·1 answer
  • What is the acceleration at the apex of a vertical up and down problem?
    9·1 answer
  • There are ___________ of galaxies in the universe containing __________ of stars in each galaxy.
    5·2 answers
  • A 1700 kg car is moving with a velocity of 20 m/s and stops.
    11·1 answer
  • Explain two ways of magnetising an object​
    8·1 answer
  • 7. A perfect cube has a width of 2 cm. What is the cube's volume? Show your work!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!