Answer:
E = k Q / [d(d+L)]
Explanation:
As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field
E = k ∫ dq/ r² r^
"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element and "r^" is a unit ventor from the load element to the point.
Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant
λ = Q / L
If we derive from the length we have
λ = dq/dx ⇒ dq = L dx
We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge
dE = k dq / x²2
dE = k λ dx / x²
Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider
E = k 
We take out the constant magnitudes and perform the integral
E = k λ (-1/x)
Evaluating
E = k λ [ 1/d - 1/ (d+L)]
Using λ = Q/L
E = k Q/L [ 1/d - 1/ (d+L)]
let's use a bit of arithmetic to simplify the expression
[ 1/d - 1/ (d+L)] = L /[d(d+L)]
The final result is
E = k Q / [d(d+L)]
Answer:
You need to write an essay with 800 to 1,200 words. That talks about the significance of one of the seminal works (Definition- a work that strongly influenced people. Example: Martin Luther King Jr's speech "I Have A Dream") in the unit and how it connects to current issues (Example- Politics). It should be clearly stated and should be well supported by research (Example- a trustworthy article talking about its influence). You should properly cite at least 3 good sources from different perspectives. (Example- a republicans view for one source, a democratic for another, and a neutral for the third) You should also use direct quotes (Example: "Let them eat cake." - Marie Antoinette) and paraphrase- put it in your own words. (Example: Marie Antoinette said that they should eat cake.) I hope this helps, good luck! :)
Explanation:
Answer:
2.9 M
Explanation:
The concentration-time equation for a second order reaction is:
1/[A] = kt + 1/[A°]
Where,
A = concentration remaining at time, t
A° = initial concentration
k = rate constant
1/[A] = (1.80 x 10^-3) * (45.6) + 1/3.81
1/[A] = 0.345
= 1/0.345
= 2.9 M.
The average velocity of Sandy is given by the total distance covered S divided by the total time taken t:

The total distance covered is

while the total time taken is 2 hours + half an hour (for the rest) + 1 hour and half, so

Therefore, the average velocity is