Hello. You did not inform the experiment that Arthur is conducting, which makes it impossible for your question to be answered accurately. However, I will try to help you in the best possible way.
The hypothesis is an assumption that is made before the experiment is carried out. This hypothesis is formed with the observation of some phenomenon of nature where the researcher believes that two or more elements interact to form a result. In this case, the experiment is carried out to determine whether the assumption, that is, the hypothesis is false or true. In the event that an experiment determines that the hypothesis is false, two things may have occurred: (a) the experiment was set up, or analyzed incorrectly, (b) the elements tested have no relation to the observed phenomenon.
As v becomes zero at the highest point, i prefer considering different travelling directions so it will become less complicated.
dont forget to add the total time up .
also to master the skills, write down the "uvsat" may help (thats the way i found it easier to handle problems)
Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
-- The sample was a fluid.
-- It was a mixture or a suspension ... NOT a solution.