1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
15

Which equation can be used to solve for accelerarion

Physics
2 answers:
guapka [62]3 years ago
8 0

Answer:



a = \frac{v-u}{t}

MaRussiya [10]3 years ago
6 0

Answer:

a = Δv/Δt

Explanation:

The little triangle stands for change and t=time and v=velocity

You might be interested in
A block of ice(m = 14.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal for
nadezda [96]

Answer:

a) The weight and the normal force of the block has a magnitude of 137.298 newtons and the pull force exerted on the block has a magnitude of 98 newtons.

b) The final speed of the block of ice is 9.8 meters per second.

Explanation:

a) We need to calculate the weight, normal force from the ground to the block and the pull force. By 3rd Newton's Law we know that normal force is the reaction of the weight of the block of ice on a horizontal.

The weight of the block (W), measured in newtons, is:

W = m\cdot g (1)

Where:

m - Mass of the block of ice, measured in kilograms.

g  - Gravitational acceleration, measured in meters per square second.

If we know that m = 14\,kg and g = 9.807\,\frac{m}{s^{2}}, the magnitudes of the weight and normal force of the block of ice are, respectively:

N = W = (14\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

N = W = 137.298\,N

And the pull force is:

F_{pull} = 98\,N

The weight and the normal force of the block has a magnitude of 137.298 newtons and the pull force exerted on the block has a magnitude of 98 newtons.

b) Since the block of ice is on a frictionless surface and pull force is parallel to the direction of motion and uniform in time, we can apply the Impact Theorem, which states that:

m\cdot v_{o} +\Sigma F \cdot \Delta t = m\cdot v_{f} (2)

Where:

v_{o}, v_{f} - Initial and final speeds of the block, measured in meters per second.

\Sigma F - Horizontal net force, measured in newtons.

\Delta t - Impact time, measured in seconds.

Now we clear the final speed in (2):

v_{f} = v_{o}+\frac{\Sigma F\cdot \Delta t}{m}

If we know that v_{o} = 0\,\frac{m}{s}, m = 14\,kg, \Sigma F = 98\,N and \Delta t = 1.40\,s, then final speed of the ice block is:

v_{f} = 0\,\frac{m}{s}+\frac{(98\,N)\cdot (1.40\,s)}{14\,kg}

v_{f} = 9.8\,\frac{m}{s}

The final speed of the block of ice is 9.8 meters per second.

6 0
3 years ago
7. Which law describes when a person lands on a
marissa [1.9K]

Answer:

Newton's Third Law

Explanation:

Newton's third law

Newton's third law: “for every action, there is an equal and opposite reaction.” This is where you get the bounce. When you push down on the trampoline (or fall downward onto the trampoline bed), Newton's third law says that an equal and opposite reaction pushes back.

:)

6 0
3 years ago
Read 2 more answers
If I were a geologist working in South America along one of those plate boundaries, what might I see if I were looking at sedime
faust18 [17]

Answer:

you'll see rocks that have been there for years

4 0
3 years ago
A tank initially holds 100 gallons of salt solution in which 50 lbs of salt has been dissolved. A pipe fills the tank with brine
olga_2 [115]

Answer:

A. 171.24 Ibs

Explanation:

To find the amount of salt in the tank,

Let Q = Amount of salt in the mixture

And let 100 + (3-2)t = 100 + t be the volume of mixture at anytime t.

Rate of gain - Rate of loss = dQ / dt

Concentration of salt = Q / (100+t)

For the linear differential equation,

dQ / dt = 3(2) - 2 [Q/ (100 + t)]

dQ /dt + Q [2 / (100 + t)] = 6

The general solution of the linear differential equation is:

Q (i.f) = ∫ A(t) (i.f) dt + C

Therefore,

i.f = e ^ ∫ P(t) dt

And P(t) = 2 / (100 + t)

i.f = e ^ ∫ 2 / (100 + t)

  = e ^ 2㏑ (100 + t)

     = e ^ ㏑ (100 + t) ^2 = (100 + t) ^2

Q(100 + t) ^ 2 = ∫6 (100 + t) ^2 dt + C

 Q(100 + t) ^2 = 2(100 + t) ^ 3 + C

  When t = 0, Q = 50

Therefore,

50( 100) ^2 = 2(100) ^3 + C

 C = -1.5 * 10 ^6

therefore, when t = 30,

Q (100 + 30) ^2 = 2(100 + 30) ^3 - 1.5 * 10 ^6

 Q (400) ^2 = 2(130) ^3 - 1.5 * 10 ^6

    Q = 171.24 Ibs

7 0
3 years ago
How are intensity sound and energy related
zubka84 [21]
Sound is a form of energy in that it consists fluctuations of air pressure . The speed of the fluctuations is measured in cycles per second or Hertz (HZ)

Intensity is how large the fluctuations are, also known as amplitude and for the sound the unit is decibels of sonic pressure level (dB SPL)
8 0
3 years ago
Other questions:
  • How does the genetic makeup of the skin cells differ from the genetic makeup of the gametes?
    14·2 answers
  • Which type of plate boundary led yo the creation of the himalayan mountains,the Highest in the world, near India?
    9·1 answer
  • All digits shown on the measuring device, plus one estimated digit are considered____
    5·1 answer
  • As Jules pushes a box across a the floor that it moves faster on the waxed tiles than the carpet. Explain why. A) The more frict
    13·2 answers
  • The Tesla Roadster electric car is rated at 16.8kW. How much energy does it use during a one hour drive? Answer in MJ
    7·2 answers
  • What feature of an object does not affect air resistance?
    10·1 answer
  • Energy flow in an ecosystem is best represented by
    8·1 answer
  • A vertical piston-cylinder device initially contains 0.1 m^3 of air at 400 K and 100 kPa. At this initial condition, the piston
    13·1 answer
  • A body of mass 10kg has a height of 200cm, calculate the potential energy. (Take g =
    8·2 answers
  • If the coefficient of kinetic friction between the puck and the ice is 0.05, how far does the puck slide before coming to rest?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!