Answer:
18.066 × 10²³ particles
Explanation:
Given data:
Number of moles of Sn = 3 mol
Number of representative particles = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 3 mole of Sn:
3 × 6.022 × 10²³ particles
18.066 × 10²³ particles
<span>Avogadro's number.
1 mole of any substance, molecule or element is equal to a certain amount of atom.
6.022 x 10^23 is the Avogradro's constant.
Magnesium Oxide is a compound. therefore if you have 30.3 g of it (1 mol), it will have the same number of atoms.
34.69 moles of MgO has 208.9 x 10^23 number of atoms.
2.089 x 10^25 is also a correct answer.</span><span>
</span>
Membranes are barriers and “gatekeepers”, they only let certain molecules pass through them.
they also transport nutrients to the cell
Ca2+ would bond to any element in a 1 to 1 ratio that had an equal and opposite charge.
Neon is a noble gas, and doesn’t form bonds m
Carbon isn’t typically found in ion state, but if it did, it would likely by C4+
Flouring in ionic state is F1-, so you would need 2 flourines to cancel the 2+ charge of Calcium
Then the only option left would be Oxygen which, when in ion form is found be 2-