Bit of an odd question. Power Plants are known to use water-powered turbines to generate electricity, but can also make use of nuclear fission.
1) In the reference frame of one electron: 0.38c
To find the relative velocity of one electron with respect to the other, we must use the following formula:

where
u is the velocity of one electron
v is the velocity of the second electron
c is the speed of light
In this problem:
u = 0.2c
v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)
Substituting, we find:

2) In the reference frame of the laboratory: -0.2c and +0.2c
In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are
+0.2c
-0.2c
Answer:
Case A
Explanation:
given,
size of bacteria = 1 mm x 1 mm
velocity = 20 mm/s
size of the swimmer = 1.5 m x 1.5 m
velocity of swimmer = 3 m/s
Viscous force

for the bacteria


for the swimmer


from the above force calculation
In case B inertial force that represent mass is more than the inertial force in case of bacteria.
Viscous force is dominant in case of bacteria.
So, In Case A viscous force will be dominant.
15 min
Explanation:
take 0.25 and put it in for 1.00 and you will see its 0.25 but when you add it all 4 times it is 1.00 so then you would take that and do it to the hour ... how many times does four go into 60
Answer:
# of Snickers bars 2
Explanation:
Power output= 0.30 HP
=0.3*746
= 0.30 HP (746 W=1.00 HP)
= 224 W
time required 2 h 49 m = 10140 seconds
Since power is work divided by time, then work is:
Work done by the jet = P*t
= 224 *(10140)
= 2.3 MJ (2.3 x
J)
Converting MJ to Cal
2.3 MJ=549 Cal
# of Snickers bars = 549 Cal / 280 Cal
= 2.0 bars (rounded from 1.96)