Answer:
b. The shorter the half-life, the more dangerous the radioisotope.
Answer:
Mass = 135.66 ×10⁻²¹ g
Explanation:
Given data:
Number of molecules of CuSO₄= 5.119×10²
Mass of CuSO₄= ?
Solution:
The given problem will solve by using Avogadro number.
1 mole contain 6.022×10²³ molecules
5.119×10² molecules ×1 mol / 6.022×10²³ molecules
0.85×10⁻²¹ mol
Mass in grams:
Mass = number of moles × molar mass
Mass = 0.85×10⁻²¹ mol × 159.6 g/mol
Mass = 135.66 ×10⁻²¹ g
Answer:
I
Explanation:
Among the halogens given in this problem, iodine has the lowest attraction for electrons.
This property is known as electronegativity.
Electronegativity is expressed as the relative tendency with which the atoms of the element attracts valence electrons in a chemical bond.
- As you go down the periodic group the electronegativity decreases.
- The most electronegative element on the periodic table is fluorine.
- Down the group, iodine is the least electronegative
- This is due to the large size of its atom.
Answer:
25.157 cm³
Explanation:
Data Given:
Mass of Sugar (m) = 40g
Density of sugar given in literature = 1.59 g/cm³
Volume of Sugar = ?
The formula will be used is
d = m/v ........................................... (1)
where
D is density
m is the mass
v is the volume
So
Rearrange the Equation (1)
d x v = m
v = m/ d ................................................ (2)
put the given values in Equation (2)
v = 40g / 1.59 g/cm³
v = 25.157 cm³
volume of 40 g of sugar = 25.157 cm³
Answer:
Mass = 255 g
Explanation:
Given data:
Number of moles of nitrogen = 7.5 mol
Mass of ammonia formed = ?
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
Now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
7.5 : 2/1×7.5 = 15
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 15 mol × 17 g/mol
Mass = 255 g