Answer:
The correct answer is 32.2 grams.
Explanation:
Based on the given information, the enthalpy of formation for aluminum oxide is 1676 kJ/mol. It signifies towards the energy that is required to generate aluminum and oxygen, and both of these exhibit zero enthalpy of formation. Therefore, the ΔHreaction is the required energy to generate 2 moles of aluminum. Thus, the energy needed for the formation of single mole of aluminum is,
ΔHrxn = 1676/2 = 838 kJ/mol
Q or the energy input mentioned in the given case is 1000 kJ. Therefore, the number of moles of Al generated is,
(1000 kJ) / (838 kJ/Al mole) = 1.19 moles of Aluminum
The grams of aluminum produced can be obtained by using the formula,
mass = moles * molecular mass
= 1.19 * 26.98
= 32.2 grams.
Answer:

Explanation:
We know, 
where, R = 0.0821 L.atm/(mol.K), T is temperature in kelvin and
is difference in sum of stoichiometric coefficient of products and reactants
Here
and T = 311 K
So, ![K_{p}=(0.0111)\times [(0.0821L.atm.mol^{-1}.K^{-1})\times 311K]^{-1}=4.35\times 10^{-4}](https://tex.z-dn.net/?f=K_%7Bp%7D%3D%280.0111%29%5Ctimes%20%5B%280.0821L.atm.mol%5E%7B-1%7D.K%5E%7B-1%7D%29%5Ctimes%20311K%5D%5E%7B-1%7D%3D4.35%5Ctimes%2010%5E%7B-4%7D)
Hence value of equilibrium constant in terms of partial pressure
is 
I believe that the answer is ionic