Kinetic energy = (1/2) (mass) (speed²).
A Physicist in the canoe, or on a raft floating downriver next to the canoe, will say that the canoe's kinetic energy is zero.
A Physicist on the riverbank, watching the canoe drift by at 1 m/s, will say that its kinetic energy is 9 Joules.
They're both correct.
Explanation:
The average speed of a modern cruise ship is roughly 20 knots (23 miles per hour), with maximum speeds reaching about 30 knots (34.5 miles per hour).
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}
The nuclear fusion of hydrogen atoms releases a huge amount of energy. So the correct choice is C. Conversion of mass to energy.
What is nuclear fusion?
When two small nuclei join to form a new nucleus, then this process is termed nuclear fusion. A huge amount of energy is released when there occurs nuclear fusion between the two nuclei. And a new element is formed.
It has been observed that the amount of energy released in nuclear fusion is equal to the mass difference between the mass of the formed nucleus and the total mass of old nuclei. Hence in the nuclear fusion of hydrogen nuclei to form a helium nucleus, the energy is released due to the conversion of mass into energy.
The pressure is increased to make the hydrogen atoms fuse but this change in pressure does not contribute to the energy released in the fusion of hydrogen.
The magnitude of the gravitational field is too low and it does not contribute to the energy released in the fusion of hydrogen.
The gravitational collapse does not occur between the two hydrogen atoms. This phenomenon occurs in celestial bodies so this also does not contribute to the energy released in the fusion of hydrogen.
Learn more about nuclear fusion here:
brainly.com/question/10165218
#SPJ4