Answer:
.10/KWh
Explanation:
divide 606 by 61.37 and you get .1012...
The position of the object at time t =2.0 s is <u>6.4 m.</u>
Velocity vₓ of a body is the rate at which the position x of the object changes with time.
Therefore,

Write an equation for x.

Substitute the equation for vₓ =2t² in the integral.

Here, the constant of integration is C and it is determined by applying initial conditions.
When t =0, x = 1. 1m

Substitute 2.0s for t.

The position of the particle at t =2.0 s is <u>6.4m</u>
Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.
Answer:
a. 2v₀/a b. 2v₀/a
Explanation:
a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.
Since the dragster starts from rest with an acceleration, a, using
s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster
s' = 0t + 1/2at²
s' = 1/2at²
Since the distance moved by me and the dragster must be the same,
s = s'
v₀t. = 1/2at²
v₀t. - 1/2at² = 0
t(v₀ - 1/2at) = 0
t= 0 or v₀ - 1/2at = 0
t= 0 or v₀ = 1/2at
t= 0 or t = 2v₀/a
So the maximum time tmax = 2v₀/a
b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s = v₀(2v₀/a)
= 2v₀/a