The correct option is (B) <span>Aluminum is a metal and is shiny, malleable, ductile, conducts heat and electricity, forms basic oxides, and forms cations in aqueous solution.
Since Aluminium is in group 13, and all the elements in group 13 are either metals or metalloids(Boron). Hence we are left with option (B) and (D). Boron is the only metalloid in group 13 and aluminium is a metal(not a metalloid); therefore, we are left with only one option which is Option (B). And Aluminium is </span>shiny, malleable, ductile, conducts heat and electricity, forms basic oxides, and forms cations in aqueous solution.<span>
</span><span>
</span>
We do not feel the gravitational forces from objects other than the Earth because they are weak.
Answer:
d = 0.05 [m] = 50 [mm]
Explanation:
We must remember the principle of conservation of energy which tells us that energy is transformed from one way to another. For this case, the initial kinetic energy is transformed into useful work that is equal to the product of force by distance.
![E_{k}=F*d\\400 = 8000*d\\d = 0.05 [m] = 50 [mm]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DF%2Ad%5C%5C400%20%3D%208000%2Ad%5C%5Cd%20%3D%200.05%20%5Bm%5D%20%3D%2050%20%5Bmm%5D)
Answer:
An object is in motion when its distance from another object is changing. ... A reference point is a place or object used for comparison to determine if something is in motion. An object is in motion if it changes position relative to a reference point. You assume that the reference point is stationary, or not moving.
Explanation:
Answer:
0.125 m
Explanation:
In this problem, we have:
v = 0.50 m/s is the average velocity of the wave
T = 0.25 s is the period of the wave
We can find the frequency of the wave, which is equal to the reciprocal of the period:

The problem is asking us to find the distance between two crests of the wave: this is equivalent to the wavelength. The wavelength is related to the average velocity and the frequency by the formula:

Substituting the numerical values, we find
