1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
12

You are playing hockey with friends on a very large frozen pond. The hockey puck is at your feet motionless. You take a slap-sho

t with your hockey stick and the hockey puck goes zooming off at a high rate of speed sliding along the ice. The hockey puck eventually comes to a stop because:
a. There is no net forward force on the puck and so it will eventually slow down.
b. Friction between the puck and the ice will do enough negative work on the puck to equal the positive work done by you on the puck.
c. Friction between the puck and the ice will do more negative work on the puck than you did positive work on the puck.
d. Friction between the puck and the ice will do less negative work on the puck than you did positive work on the puck.
Physics
1 answer:
lapo4ka [179]3 years ago
6 0

Answer:

The correct answer is letter b. Friction between the puck and the ice will do enough negative work on the puck to  equal the positive work done by you on the puck.

Explanation:

According to the Newton's First Law of Motion, the rocky puck would keep sliding on the ice forever. However, due to the friction acts on the puck, it will slow down and eventually stopping.  

You might be interested in
Does 3.60 x 10 ⁻² have 2 significant figures
Mandarinka [93]

Answer:

Number of Significant Figures: 2

The Significant Figures are 3 6

Explanation:

= 3.60 × 102

(scientific notation)

= 3.60e2

(scientific e notation)

= 360 × 100

(engineering notation)

(one)

= 360

(real number)

4 0
3 years ago
The aqueduct passes under Johnson Road in Lancaster through a siphon. The maximum capacity of the aqueduct is 350 m3/s. The heig
Mariulka [41]

Answer:

D ≈ 8.45 m

L ≈ 100.02 m

Explanation:

Given

Q = 350 m³/s (volumetric water flow rate passing through the stretch of channel, maximum capacity of the aqueduct)

y₁ - y₂ = h = 2.00 m (the height difference from the upper to the lower channels)

x = 100.00 m (distance between the upper and the lower channels)

We assume that:

  • the upper and the lower channels are at the same pressure (the atmospheric pressure).
  • the velocity of water in the upper channel is zero (v₁ = 0 m/s).
  • y₁ = 2.00 m  (height of the upper channel)
  • y₂ = 0.00 m  (height of the lower channel)
  • g = 9.81 m/s²
  • ρ = 1000 Kg/m³ (density of water)

We apply Bernoulli's equation as follows between the point 1 (the upper channel) and the point 2 (the lower channel):

P₁ + (ρ*v₁²/2) + ρ*g*y₁ = P₂ + (ρ*v₂²/2) + ρ*g*y₂

Plugging the known values into the equation and simplifying we get

Patm + (1000 Kg/m³*(0 m/s)²/2) + (1000 Kg/m³)*(9.81 m/s²)*(2 m) = Patm + (1000 Kg/m³*v₂²/2) + (1000 Kg/m³)*(9.81 m/s²)*(0 m)

⇒ v₂ = 6.264 m/s

then we apply the formula

Q = v*A  ⇒   A = Q/v ⇒   A = Q/v₂

⇒   A = (350 m³/s)/(6.264 m/s)

⇒   A = 55.873 m²

then, we get the diameter of the pipe as follows

A = π*D²/4   ⇒   D = 2*√(A/π)

⇒   D = 2*√(55.873 m²/π)

⇒   D = 8.434 m ≈ 8.45 m

Now, the length of the pipe can be obtained as follows

L² = x² + h²

⇒ L² = (100.00 m)² + (2.00 m)²

⇒ L ≈ 100.02 m

6 0
3 years ago
Read 2 more answers
Help ASAP, will give you brainliest!
Stels [109]

Answer:

A

Explanation:

5 0
3 years ago
Read 2 more answers
Help me please !!!!!
bezimeni [28]

Answer:

confounding cause they had exposure to many programmes

8 0
3 years ago
Read 2 more answers
Determine the CM of a rod assuming its linear mass density λ (its mass per unit length) varies linearly from λ = λ0 at the left
Dahasolnce [82]

Answer:

x_c= \dfrac{5}{9}L

I=\dfrac {7}{12}\lambda_ 0 L^3

Explanation:

Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.

At any  distance x from point A mass density

\lambda =\lambda_0+ \dfrac{2\lambda _o-\lambda _o}{L}x

\lambda =\lambda_0+ \dfrac{\lambda _o}{L}x

Lets take element mass at distance x

dm =λ dx

mass moment of inertia

dI=\lambda x^2dx

So total moment of inertia

I=\int_{0}^{L}\lambda x^2dx

By putting the values

I=\int_{0}^{L}\lambda_ ox+ \dfrac{\lambda _o}{L}x^3 dx

By integrating above we can find that

I=\dfrac {7}{12}\lambda_ 0 L^3

Now to find location of center mass

x_c = \dfrac{\int xdm}{dm}

x_c = \dfrac{\int_{0}^{L} \lambda_ 0(1+\dfrac{x}{L})xdx}{\int_{0}^{L} \lambda_0(1+\dfrac{x}{L})}

Now by integrating the above

x_c=\dfrac{\dfrac{L^2}{2}+\dfrac{L^3}{3L}}{L+\dfrac{L^2}{2L}}

x_c= \dfrac{5}{9}L

So mass moment of inertia I=\dfrac {7}{12}\lambda_ 0 L^3 and location of center of mass  x_c= \dfrac{5}{9}L

8 0
3 years ago
Other questions:
  • A technical machinist is asked to build a cubical steel tank that will hold 60L of water.Calculate in meters the smallest possib
    12·1 answer
  • you lift a 30 N crate 2 meters onto a shelf. it takes you 5 seconds to accomplish this. how much gravitional potential energy do
    12·1 answer
  • A worker on the roof of a house drops his 0.46 kg hammer, which slides down the roof at constant speed of 9.88 m/s. The roof mak
    15·1 answer
  • The displacement vector from your house to the library is 740 m long, pointing 40 ∘ north of east. Part A What are the x-compone
    12·1 answer
  • Differentiate between mass and weight
    7·1 answer
  • One of the largest pipe organs is in the aŭditorium organ in the Fox Theatre. The pipe is 32
    5·1 answer
  • Calculate the mass of -1.5C of electrons​
    7·1 answer
  • What do we call the energy that is transferred to
    12·1 answer
  • What is nuclear fission?​
    15·2 answers
  • What is the change in entropy of 0.130 kg of helium gas at the normal boiling point of helium when it all condenses isothermally
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!