Answer:
P₂ = 5000 KPa
Explanation:
Given data:
Initial volume = 2.00 L
Initial pressure = 50.0 KPa
Final volume = 20.0 mL (20/1000=0.02 L)
Final pressure = ?
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
50.0 KPa × 2.00L = P₂ × 0.02 L
P₂ = 100 KPa. L/0.02 L
P₂ = 5000 KPa
Answer:
Frecuency = 5,83x10⁻⁷ Hz
Explanation:
The equation that connects wavelenght and frequency is given by:
λ = c/ν
λ=wavelenght (expressed in lenght´s units)
c= speed of light (3x10⁸ m/sec)
ν=frequency (expressed in units of time⁻¹ or Herzt)
In our case, λ=5,14x10⁻⁷ m , so replacing in our previous formula, this gives us the final result of ν (frequency for green light) of 5,83x10¹⁴ Hz (or Herzt)
<span>the highest ionization energy is Be, it is higher and righter than other elements in periodic table, so it harder to remove electron from its atom</span>