1,3-pentadiene has two double bonds which are conjugated, which undergo electrophilic addition reaction on reacting with
.
The structure of 1,3-pentadiene is shown in the image.
When strong acid such as
reacts with 1,3-pentadiene, the electrophilic addition reaction can occur either on double bond at 1,2-position or at 3,4-position. The reaction that occurs is shown in the image.
Answer:
A
Explanation:
I guess it's a, because nuclear decay is likely to occur when either the mass or atomic number is greater than 83.
Answer:

Explanation:
In this case, we have to start with the <u>chemical reaction</u>:

So, if we start with <u>10 mol of cyclohexanol</u> (
) we will obtain 10 mol of cyclohexanol (
). So, we can calculate the grams of cyclohexanol if we<u> calculate the molar mass:</u>

With this value we can calculate the grams:

Now, we have as a product 500 mL of
. If we use the <u>density value</u> (0.811 g/mL). We can calculate the grams of product:

Finally, with these values we can calculate the <u>yield</u>:
%= (405.5/820)*100 = 49.45 %
See figure 1
I hope it helps!
The molarity is calculated using the following rule:
molarity = number of moles of solvent / volume of solution (in liters)
We have the volume of solution = 250 ml = 0.25 liters and the molarity = 3 m
Substituting in the equation, we get:
3 = number of moles / 0.25
number of moles = 3 x 0.25 = 0.75 moles
The tall trees much of the sun
have you ever been in a forest? if you have, you’ve probably noticed that it’s usually very shady, and not a lot of sunlight hits the ground. That’s cause the tall trees are so dense, the sunlight doesn’t reach the ground