Answer:
Laura can look for a transparent and translucent liquid and hence determine which beaker has water and which has solution
Explanation:
Pure water is a compound that is transparent in color. However, a solution is a liquid mixture comprising of a solvent or a solute. The atoms of solute occupy space between the atoms of solvent and hence are said to dissolve in it. Water can be a solvent.
Thus, if the beaker has a transparent liquid in it, then it would be pure water while a beaker having a translucent liquid, then it would be a solution
Missing question:
Chemical reaction: H₂ <span>+ 2ICl → 2HCl + I</span>₂.
t₁ = 5 s.
t₂ = 15 s.
c₁ = 1,11 M = 1,11 mol/L.
c₂ = 1,83 mol/L.
rate of formation = Δc ÷ Δt.
rate of formation = (c₂ - c₁) ÷ (t₂ - t₁).
rate of formation = (1,83 mol/L - 1,11 mol/L) ÷ (15 s - 5 s).
rate of formation = 0,72 mol/L ÷ 10 s.
rate of formation = 0,072 mol/L·s.
- C2H4 + H20 --> C2H5O
- <span>C3H8 + Cl2--> C3H7Cl +HCl
- </span><span>C2H2+Br2 --> C2H2Br2</span>
- C4H10+Br2 --> C4H10+HBr
- <span>C3H6 + BR2 --</span>> C3H6BR2
Answer:
(CH3)3C^+ + OH^- --------> (CH3)3COH
Explanation:
This reaction has to do with SN1 reaction of alkyl halides. Here tert-butanol is formed from tert-butyl bromide.
The first step in the reaction is the formation of a carbocation. This is a unimolecular reaction. The rate of reaction depends on the concentration of the alkyl halide. This is a slow step and thus the rate determining step in the mechanism.
(CH3)3CBr -------> (CH3)3C^+ + Br^-
The second step is a fast step and it completes the reaction mechanism. It is a bimolecular reaction as follows;
(CH3)3C^+ + OH^- --------> (CH3)3COH