1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Doss [256]
3 years ago
6

PLEASE HELP!!! I have an electromagnet. If I detach the two wires from the battery and reattach them to the opposite terminals,

how would that change the current and magnetic field?
Physics
1 answer:
lakkis [162]3 years ago
4 0

Explanation:

hope it helps thanks

pls mark me as brainliest

You might be interested in
20 POINTSSS!!!!!!!!
Soloha48 [4]
Answer: A
Hope this help you!!
7 0
3 years ago
A car approaches you at a constant speed, sounding its horn, and you hear a frequency of 76 Hz. After the car goes by, you hear
Talja [164]

Answer:

70.07 Hz

Explanation:

Since the sound is moving away from the observer then

f_o = f_s\frac {(v+vs)}{v} and f_o = f_s\frac {(v-vs)}{v} when moving towards observer

With f_o of 76 then taking speed in air as 343 m/s we have

76 = f_s\times\frac {(343-vs)}{343}

f_s=\frac {343\times 76}{343-v_s}

Similarly, with f_o of 65 we have

65 = f_s\times\frac {(343+vs)}{343}\\f_s=\frac {343\times 65}{343+v_s}

Now

f_s=\frac {343\times 65}{343+v_s}=\frac {343\times 76}{343-v_s}

v_s=27.76 m/s

Substituting the above into  any of the first two equations then we obtain

f_s=70.07 Hz

4 0
3 years ago
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400mm wide. The diffraction pattern is observed
kogti [31]

Answer:

a)y_{first}=5.3mm

b)y_{second}=10.6-5.3 =5.3 mm  

Explanation:

a)

The width of the central bright in this diffraction pattern is given by:

y=\frac{m\lambda D}{a} when m is a natural number.

here:

  • m is 1 (to find the central bright fringe)                
  • D is the distance from the slit to the screen
  • a is the slit wide
  • λ is the wavelength

So we have:

y_{first}=\frac{633*10^{9}*3.35}{0.0004}

y_{first}=5.3mm

b)

Now, if we do m=2 we can find the distance to the second minima.

y_{2}=\frac{2*633*10^{9}*3.35}{0.0004}

y_{2}=10.6 mm

Now we need to subtract these distance, to get the width of the first bright fringe :

y_{second}=10.6-5.3 =5.3 mm    

I hope it heps you!

     

4 0
3 years ago
A motorcycle accelerates uniformly from rest and reaches a linear speed of 24.8 m/s in a time of 9.87 s. The radius of each tire
Vinvika [58]

Answer:

8.756 rad/s²

Explanation:

Given that:

A motorcycle accelerates uniformly from rest, then initial velocity v_i = 0 m/s

It final velocity v_f = 24.8 m/s

time (t) = 9.87 s

radius (r) of each tire  = 0.287 m

Firstly; the linear acceleration of the motor cycle  is determined as follows:

a_T =(V_f - v_i)/t

=(24.8-0)/9.87

=2.513 m/s²

Then;  the magnitude of angular acceleration

α =a_T /r

=2.513/0.287

=8.756 rad/s²

6 0
4 years ago
Read 2 more answers
A 70.0-kg person throws a 0.0430-kg snowball forward with a ground speed of 32.0 m/s. A second person, with a mass of 58.5 kg, c
Aleks04 [339]

Answer:

The velocities of the skaters are v_{1} = 3.280\,\frac{m}{s} and v_{2} = 0.024\,\frac{m}{s}, respectively.

Explanation:

Each skater is not under the influence of external forces during process, so that Principle of Momentum Conservation can be used on each skater:

First skater

m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b} (1)

Second skater

m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2} (2)

Where:

m_{1} - Mass of the first skater, in kilograms.

m_{2} - Mass of the second skater, in kilograms.

v_{1,o} - Initial velocity of the first skater, in meters per second.

v_{1} - Final velocity of the first skater, in meters per second.

v_{b} - Launch velocity of the meter, in meters per second.

v_{2} - Final velocity of the second skater, in meters per second.

If we know that m_{1} = 70\,kg, m_{b} = 0.043\,kg, v_{b} = 32\,\frac{m}{s}, m_{2} = 58.5\,kg and v_{1,o} = 3.30\,\frac{m}{s}, then the velocities of the two people after the snowball is exchanged is:

By (1):

m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b}

m_{1}\cdot v_{1,o} - m_{b}\cdot v_{b} = m_{1}\cdot v_{1}

v_{1} = v_{1,o} - \left(\frac{m_{b}}{m_{1}} \right)\cdot v_{b}

v_{1} = 3.30\,\frac{m}{s} - \left(\frac{0.043\,kg}{70\,kg}\right)\cdot \left(32\,\frac{m}{s} \right)

v_{1} = 3.280\,\frac{m}{s}

By (2):

m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2}

v_{2} = \frac{m_{b}\cdot v_{b}}{m_{2}+m_{b}}

v_{2} = \frac{(0.043\,kg)\cdot \left(32\,\frac{m}{s} \right)}{58.5\,kg + 0.043\,kg}

v_{2} = 0.024\,\frac{m}{s}

5 0
3 years ago
Other questions:
  • Consider an event with space-time coordinates (t=2.00s,x=2.50×108m) in an inertial frame of reference s. let s' be a second iner
    12·1 answer
  • The membrane that surrounds a certain type of living cell has a surface area of 5.3 x 10-9 m2 and a thickness of 1.1 x 10-8 m. A
    11·2 answers
  • you are given miles= 50 miles, time = 1 hour initial given velocity= 0 miles/hour (your standing still) and final velocity = 50
    7·1 answer
  • How do scientist determine how old the world is and the fossils inside of it?
    7·4 answers
  • On your first day at work as an electrical technician, you are asked to determine the resistance per meter of a long piece of wi
    12·1 answer
  • Process of Science Task: Earth-Centered vs. Sun-Centered Models.
    11·1 answer
  • What kind of motion is explained by particle theory
    12·2 answers
  • For no apparent reason, a poodle is running at a constant speed of 5.00 m/s in a circle with radius 2.9 m . Let v⃗ 1 be the velo
    8·1 answer
  • The foghorn blast from a big ship is a very loud sound . What is the best example of a very high pitched sound
    12·1 answer
  • One component of a magnetic has a magnitude of 0.045T and points along the +r axis, while the other component has a magnitude of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!