1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
3 years ago
15

A 0.0550-kg ice cube at −30.0°C is placed in 0.400 kg of 35.0°C water in a very well-insulated container. What is the final temp

erature in degrees Celsius?
Physics
1 answer:
KatRina [158]3 years ago
8 0

Answer:

19.34°C

Explanation:

When the ice cube is placed in the water, heat will be transferred from the hot water to it such that the heat gained (Q₁) by the ice is equal to the heat lost(Q₂) by the hot water and a final equilibrium temperature is reached between the melted ice and the cooling/cooled hot water. i.e

Q₁ = -Q₂                  ----------------------(i)

{A} Q₁ is the heat gained by the ice and it is given by the sum of ;

(i) the heat required to raise the temperature of the ice from -30°C to 0°C. This is given by [m₁ x c₁ x ΔT]

<em>Where;</em>

m₁ = mass of ice = 0.0550kg

c₁ = a constant called specific heat capacity of ice = 2108J/kg°C

ΔT₁ = change in the temperature of ice as it melts from -30°C to 0°C = [0 - (-30)]°C = [0 + 30]°C = 30°C

(ii) and the heat required to melt the ice completely - This is called the heat of fusion. This is given by [m₁ x L₁]

Where;

m₁ = mass of ice = 0.0550kg

L₁ = a constant called latent heat of fusion of ice = 334 x 10³J/kg

Therefore,

Q₁ = [m₁ x c₁ x ΔT₁] + [m₁ x L₁]        ------------------(ii)

Substitute the values of m₁, c₁, ΔT₁ and  L₁ into equation (ii) as follows;

Q₁ = [0.0550 x 2108 x 30] + [0.0550 x 334 x 10³]

Q₁ = [3478.2] + [18370]

Q₁ = 21848.2 J

{B} Q₂ is the heat lost by the hot water and is given by

Q₂ = m₂ x c₂ x ΔT₂                -----------------(iii)

Where;

m₂ = mass of water = 0.400kg

c₂ = a constant called specific heat capacity of water = 4200J/Kg°C

ΔT₂ = change in the temperature of water as it cools from 35°C to the final temperature of the hot water (T) = (T - 35)°C

Substitute these values into equation (iii) as follows;

Q₂ = 0.400 x 4200 x (T - 35)

Q₂ = 1680 x (T-35) J

{C} Now to get the final temperature, substitute the values of Q₁ and Q₂ into equation (i) as follows;

Q₁ = -Q₂

=> 21848.2 = - 1680 x (T-35)

=> 35 - T  = 21848.2 / 1680

=> 35 - T  = 13

=> T  = 35 - 13

=> T  = 22

Therefore the final temperature of the hot water is 22°C.

Now let's find the final temperature of the mixture.

The mixture contains hot water at 22°C and melted ice at 0°C

At this temperature, the heat (Q_{W}) due to the hot water will be equal to the negative of the one (Q_{I}) due to the melted ice.

i.e

Q_{W} = -Q_{I}             -----------------(a)

Where;

Q_{I} = m_{I} x c_{I} x ΔT_{I}         [m_{I} = mass of ice, c_{I} = specific heat capacity of melted ice which is now water and ΔT_{I} = change in temperature of the melted ice]

and

Q_{W} = m_{W} x c_{W} x ΔT_{W}    

[m_{W} = mass of water, c_{W} = specific heat capacity of water and ΔT_{W} = change in temperature of the water]

Substitute the values of Q_{W} and Q_{I} into equation (a) as follows

m_{W} x c_{W} x ΔT_{W}   =  - m_{I} x c_{I} x ΔT_{I}

Note that c_{W} and c_{I} are the same since they are both specific heat capacities of water. Therefore, the equation above becomes;

m_{W} x ΔT_{W}   = -m_{I} x ΔT_{I}   -----------------------(b)

Now, let's analyse ΔT_{W} and ΔT_{I}. The final temperature (T_{F}) of the two kinds of water(melted ice and cooled water) are now the same.

=> ΔT_{W} = change in temperature of water = final temperature of water(T_{F}) - initial temperature of water(T_{IW})

ΔT_{W} = T_{F} - T_{IW}

Where;

T_{IW} = 22°C           [which is the final temperature of water before mixture]

=> ΔT_{I} = change in temperature of melted ice = final temperature of water(T_{F}) - initial temperature of melted ice (T_{II})

ΔT_{I} = T_{F} - T_{II}

T_{II} = 0°C     (Initial temperature of the melted ice)

Substitute these values into equation (b) as follows;

m_{W} x ΔT_{W}   =  - m_{I} x ΔT_{I}

0.400 x (T_{F} - T_{IW}) = -0.0550 x (T_{F} - T_{II})

0.400 x (T_{F} - 22) = -0.0550 x (T_{F} - 0)

0.400 x (T_{F} - 22) = -0.0550 x (T_{F})

0.400T_{F} - 8.8 = -0.0550T_{F}

0.400T_{F} + 0.0550T_{F} =  8.8  

0.455T_{F} = 8.8

T_{F} = 19.34°C

Therefore, the final temperature of the mixture is 19.34°C

You might be interested in
A state patrol officer saw a car start from rest at a highway​ on-ramp. She radioed ahead to another officer 20 mi along the hig
Vikentia [17]

Answer:

We know from the basic speed distance relation that

Speed=\frac{Distance}{Time}

Since the car started from rest and it covered the distance between the 2 officer's in 19 minutes we have speed of the car

Speed=\frac{Distance}{Time}\\\\Speed=\frac{20}{\frac{19}{60}}=63.16mph

Which clearly exceeds the limit of 60\frac{mi}{hr}

5 0
3 years ago
An assault rifle fires an eight-shot burst in 0.40 s. Each bullet has a mass of 7.5 g and a speed of 300 m/s as it leaves the gu
myrzilka [38]

Answer:

The average recoil force on the gun during that 0.40 s burst is 45 N.

Explanation:

Mass of each bullet, m = 7.5 g = 0.0075 kg

Speed of the bullet, v = 300 m/s

Time, t = 0.4 s

The change in momentum of an object is equal to impulse delivered. So,

F\times t=mv\\\\F=\dfrac{mv}{t}

For 8 shot burst, average recoil force on the gun is :

F=\dfrac{8mv}{t}\\\\F=\dfrac{7.5}{1000}\cdot\dfrac{300}{0.4}\cdot8\\\\F=45\ N

So, the average recoil force on the gun during that 0.40 s burst is 45 N.

5 0
3 years ago
Help ;-;
nasty-shy [4]

Answer:

all qn 1,2,3 have same answer ,. Yes,. hope it helps

3 0
3 years ago
The greatest pull of a magnet is near its poles.<br><br> True<br> False
DIA [1.3K]
False because opposites attract. :)
6 0
3 years ago
Read 2 more answers
Would a bond between potassium and iodine most likely be covalent or ionic? Explain your answer
Ugo [173]
A covalent bond is between two nonmetals. An ionic bond is between a metal and a nonmetal. Potassium is a metal and iodine is a nonmetal, so their bond would most likely be ionic.
4 0
3 years ago
Other questions:
  • which equations represent the relationship between wavelength and frequency for a sound wave? check all that apply
    14·1 answer
  • If the forces acting on an object produce a net force of zero, the forces are called
    10·1 answer
  • Describe what we may observe from Earth regarding the moon’s revolution around the earth and its rotation
    9·1 answer
  • How could two waves on a rope interfere so that the rope did not move at all.
    11·1 answer
  • Predict Two objects have unlike charges. How
    5·1 answer
  • How much time passes when an object travels at a constant speed of 17 m/s over a distance of 323 m? Identify Variables, write fo
    13·1 answer
  • If the impulse is 12 newton . seconds and the force is 5 newtons, how long<br> did the force act?
    6·1 answer
  • What is the heat-loss rate through the slab if the ground temperature is 5 ∘C while the interior of the house is 25 ∘C?
    14·1 answer
  • Which phrase best completes the diagram?
    10·2 answers
  • According to the law of conservation of matter, we know that the total number of atoms does not change in a chemical reaction an
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!