1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
2 years ago
15

A 0.0550-kg ice cube at −30.0°C is placed in 0.400 kg of 35.0°C water in a very well-insulated container. What is the final temp

erature in degrees Celsius?
Physics
1 answer:
KatRina [158]2 years ago
8 0

Answer:

19.34°C

Explanation:

When the ice cube is placed in the water, heat will be transferred from the hot water to it such that the heat gained (Q₁) by the ice is equal to the heat lost(Q₂) by the hot water and a final equilibrium temperature is reached between the melted ice and the cooling/cooled hot water. i.e

Q₁ = -Q₂                  ----------------------(i)

{A} Q₁ is the heat gained by the ice and it is given by the sum of ;

(i) the heat required to raise the temperature of the ice from -30°C to 0°C. This is given by [m₁ x c₁ x ΔT]

<em>Where;</em>

m₁ = mass of ice = 0.0550kg

c₁ = a constant called specific heat capacity of ice = 2108J/kg°C

ΔT₁ = change in the temperature of ice as it melts from -30°C to 0°C = [0 - (-30)]°C = [0 + 30]°C = 30°C

(ii) and the heat required to melt the ice completely - This is called the heat of fusion. This is given by [m₁ x L₁]

Where;

m₁ = mass of ice = 0.0550kg

L₁ = a constant called latent heat of fusion of ice = 334 x 10³J/kg

Therefore,

Q₁ = [m₁ x c₁ x ΔT₁] + [m₁ x L₁]        ------------------(ii)

Substitute the values of m₁, c₁, ΔT₁ and  L₁ into equation (ii) as follows;

Q₁ = [0.0550 x 2108 x 30] + [0.0550 x 334 x 10³]

Q₁ = [3478.2] + [18370]

Q₁ = 21848.2 J

{B} Q₂ is the heat lost by the hot water and is given by

Q₂ = m₂ x c₂ x ΔT₂                -----------------(iii)

Where;

m₂ = mass of water = 0.400kg

c₂ = a constant called specific heat capacity of water = 4200J/Kg°C

ΔT₂ = change in the temperature of water as it cools from 35°C to the final temperature of the hot water (T) = (T - 35)°C

Substitute these values into equation (iii) as follows;

Q₂ = 0.400 x 4200 x (T - 35)

Q₂ = 1680 x (T-35) J

{C} Now to get the final temperature, substitute the values of Q₁ and Q₂ into equation (i) as follows;

Q₁ = -Q₂

=> 21848.2 = - 1680 x (T-35)

=> 35 - T  = 21848.2 / 1680

=> 35 - T  = 13

=> T  = 35 - 13

=> T  = 22

Therefore the final temperature of the hot water is 22°C.

Now let's find the final temperature of the mixture.

The mixture contains hot water at 22°C and melted ice at 0°C

At this temperature, the heat (Q_{W}) due to the hot water will be equal to the negative of the one (Q_{I}) due to the melted ice.

i.e

Q_{W} = -Q_{I}             -----------------(a)

Where;

Q_{I} = m_{I} x c_{I} x ΔT_{I}         [m_{I} = mass of ice, c_{I} = specific heat capacity of melted ice which is now water and ΔT_{I} = change in temperature of the melted ice]

and

Q_{W} = m_{W} x c_{W} x ΔT_{W}    

[m_{W} = mass of water, c_{W} = specific heat capacity of water and ΔT_{W} = change in temperature of the water]

Substitute the values of Q_{W} and Q_{I} into equation (a) as follows

m_{W} x c_{W} x ΔT_{W}   =  - m_{I} x c_{I} x ΔT_{I}

Note that c_{W} and c_{I} are the same since they are both specific heat capacities of water. Therefore, the equation above becomes;

m_{W} x ΔT_{W}   = -m_{I} x ΔT_{I}   -----------------------(b)

Now, let's analyse ΔT_{W} and ΔT_{I}. The final temperature (T_{F}) of the two kinds of water(melted ice and cooled water) are now the same.

=> ΔT_{W} = change in temperature of water = final temperature of water(T_{F}) - initial temperature of water(T_{IW})

ΔT_{W} = T_{F} - T_{IW}

Where;

T_{IW} = 22°C           [which is the final temperature of water before mixture]

=> ΔT_{I} = change in temperature of melted ice = final temperature of water(T_{F}) - initial temperature of melted ice (T_{II})

ΔT_{I} = T_{F} - T_{II}

T_{II} = 0°C     (Initial temperature of the melted ice)

Substitute these values into equation (b) as follows;

m_{W} x ΔT_{W}   =  - m_{I} x ΔT_{I}

0.400 x (T_{F} - T_{IW}) = -0.0550 x (T_{F} - T_{II})

0.400 x (T_{F} - 22) = -0.0550 x (T_{F} - 0)

0.400 x (T_{F} - 22) = -0.0550 x (T_{F})

0.400T_{F} - 8.8 = -0.0550T_{F}

0.400T_{F} + 0.0550T_{F} =  8.8  

0.455T_{F} = 8.8

T_{F} = 19.34°C

Therefore, the final temperature of the mixture is 19.34°C

You might be interested in
The drawing shows a side view of a swimming pool. The pressure at the surface of the water is atmospheric pressure. The pressure
Nikitich [7]

Answer:

A) To true. he pressure at the bottom of the pool decreases by exactly the same amount as the atmospheric pressure decreases

Explanation:

Let us propose the solution of this problem before seeing the final statements. The pressure increases with the depth of raposin due to the weight of water that is above the person and also the pressure exerted by the atmosphere on the entire pool, the equation describing this process is

    P =P_{atm} + ρ g y

Where P_{atm} is the atmospheric pressure, ρ  the water density, and 'y' the depth measured from the surface.

Let's examine this equation in we see that the total pressure is directly proportional to the atmospheric pressure and depth

Now we can examine the claims

A) To true. State agreement or with the equation above

B) False. Pressure changes with atmospheric pressure

C) False. It's the opposite

D) False. They are directly proportional

7 0
3 years ago
Read 2 more answers
The distance between an object and its image formed by a diverging lens is 5.80 cm. The focal length of the lens is -2.60 cm. Fi
pentagon [3]

Answer:

a) 1.55 cm

b) 4.25 cm

Explanation:

Given:

Distance between an object and the image = 5.80 cm

Focal length of the lens, f = -2.60 cm

let the image distance be 'v' and the object distance be 'u'

thus,

u + v = 5.80 cm

or

u = 5.80 - v

from the lens formula, we have

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}

on substituting the values, we have

\frac{1}{-2.60}=\frac{1}{5.80-v}+\frac{1}{v}

on rearranging, we get

-3.84 × (v × (5.80 - v)) = v + 5.80 - v

or

-2.23v + 3.84v² = 5.80

or

3.84v² - 2.23v - 5.80 = 0

on solving the quadratic equation, we get

v = 1.55 cm

and u = 5.80 - 1.55 = 4.25 cm

hence,

a) 1.55 cm

b) 4.25 cm

7 0
2 years ago
John F. Kennedy was the youngest man ever to be elected President of the United States.
Furkat [3]
False. Theodore Roosevelt was the youngest.
5 0
3 years ago
A 500.-kg roller coaster car starts from rest at the top of a 60.0-meter hill.
Paraphin [41]

1.47x10^5 Joules  
The gravitational potential energy will be the mass of the object, multiplied by the height upon which it can drop, multiplied by the local gravitational acceleration. And since it started at the top of a 60.0 meter hill, halfway will be at 30.0 meters. So  
500 kg * 30.0 m * 9.8 m/s^2 = 147000 kg*m^2/s^ = 147000 Joules.  
Using scientific notation and 3 significant figures gives 1.47x10^5 Joules.
8 0
3 years ago
How people get along with one another is called
Orlov [11]
I am not sure what kind of answer you are looking for but the start of friendship.
5 0
3 years ago
Other questions:
  • It always takes _______ to change the motion of an object.
    13·1 answer
  • A bucket of water can be whirled in a vertical circle without the water spilling out, even at the top of the circle when the buc
    15·2 answers
  • In a free market economy, the decisions made by buyers and sellers push the price of a good or service toward the _____. price c
    12·1 answer
  • Which piece of evidence contradicts the steady state theory?
    14·2 answers
  • According to the kinetic theory, all matter is composed of _______.
    11·2 answers
  • I need help matching I’m lost
    8·1 answer
  • Two speakers face each other, and they each emit a sound of wavelength λ. One speaker is 180∘ out of phase with respect to the o
    12·1 answer
  • Question 10 of 10
    14·1 answer
  • A series LR circuit contains an emf source of having no internal resistance, a resistor, a inductor having no appreciable resist
    7·1 answer
  • Kevin was setting the table for thanksgiving dinner at his house. He had bought different set of knives spoons and forks from th
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!