Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.
Answer:
C) 2.44 × 106 N/C
Explanation:
The electric flux through a circular loop of wire is given by

where
E is the electric field
A is the cross-sectional area
is the angle between the direction of the electric field and the normal to A
The flux is maximum when
, so we are in this situation and therefore
, so we can write

Here we have:
is the flux
d = 0.626 m is the diameter of the coil, so the radius is
r = 0.313 m
and so the area is

And so, we can find the magnitude of the electric field:

Explanation:
Plants, as a autotrophs have chlorophyll to capture light energy from sun to make starch and sugar. Then, consumers eat plants, and the sugar is transferred to higher trophic level in a form of organic food. Nevertheless, energy is lost by uneaten food, indigestible food, unabsorbed food, excretory waste (eg co2) and heat loss by respiration.
Answer:28 m
Explanation:
Given
Direction is
North of east i.e.
with x axis
Also ball moved by 33 m
therefore its east component is 33cos58=17.48 m
Northward component 
Answer:
Explanation:
19116 being the distance from the centre of the earth to the point you want to check in metres. So after all that you get G = 1.0888m/second squared. Hope that helps you/ you should be able to pop in any height you want.
plz mark as brainliest