When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
<h3>Compare and contrast the energy transfer of a roller coaster to that of a pendulum:</h3><h3>What is the transfer of energy in a roller coaster?</h3>
The transfer of potential energy to kinetic energy occur when the roller coaster move along the track. As the motor pulls the cars to the top, the body has more potential energy whereas when the body comes to the bottom , it has kinetic energy in the object.
<h3>What is the energy transfer in a pendulum?</h3>
As a pendulum swings, its potential energy changes to kinetic energy and kinetic energy changes into potential energy. At the top more potential energy is present.
So we can conclude that When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Explanation:
its hard to explain its very complex but its so they can function properly
Answer:
The box will be moving at 0.45m/s. The solution to this problem requires the knowledge and application of newtons second law of motion and the knowledge of linear motion. The vertical component of the force Fp acts vertically upwards against the directio of motion. This causes a constant upward force of 23sin45° to act on the box. Fhe frictional force of 13N also acts vertically upwards and so two forces act upwards against rhe force of gravity resulting un a net force of 0.7N acting kn the box. This corresponds to an acceleration of 0.225m/s². So in w.0s after i start to push v = 0.45m/s.
Explanation:
Presently, the speed of light in a vacuum is defined to be exactly 299,792,458 m/s (approximately 186,282 miles per second). . An early experiment to measure the speed of light was conducted by Ole Romer, a Danish physicist, in 1676. Using a telescope, Ole observed the motions of Jupiter and one of its moons, Io