Answer:
The probability that the message will be wrong when decoded is 0.05792
Step-by-step explanation:
Consider the provided information.
To reduce the chance or error, we transmit 00000 instead of 0 and 11111 instead of 1.
We have 5 bits, message will be corrupt if at least 3 bits are incorrect for the same block.
The digit transmitted is incorrectly received with probability p = 0.2
The probability of receiving a digit correctly is q = 1 - 0.2 = 0.8
We want the probability that the message will be wrong when decoded.
This can be written as:

Hence, the probability that the message will be wrong when decoded is 0.05792
The answer to the question that needs to go on the top is 33
Answer:
Step-by-step explanation:
The sides of the base are each 5 inches. We see 4 right angles so that we are dealing with a square.
The triangles look to be isosceles. In any event there are 4 of them. So the answer is the 3rd one down.
Perpendicular to the base.
Hope this helps!!!
Answer:
21.77% probability that the antenna will be struck exactly once during this time period.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
In this question:

Find the probability that the antenna will be struck exactly once during this time period.
This is P(X = 1).


21.77% probability that the antenna will be struck exactly once during this time period.