Answer:
The value of Modulus of elasticity E = 85.33 ×
![\frac{lbm}{in^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7Blbm%7D%7Bin%5E%7B2%7D%20%7D)
Beam deflection is = 0.15 in
Explanation:
Given data
width = 5 in
Length = 60 in
Mass of the person = 125 lb
Load = 125 × 32 = 4000![\frac{ft lbm}{s^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7Bft%20lbm%7D%7Bs%5E%7B2%7D%20%7D)
We know that moment of inertia is given as
![I = \frac{bt^{3} }{12}](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7Bbt%5E%7B3%7D%20%7D%7B12%7D)
![I = \frac{5 (1.5^{3} )}{12}](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7B5%20%281.5%5E%7B3%7D%20%29%7D%7B12%7D)
I = 1.40625 ![in^{4}](https://tex.z-dn.net/?f=in%5E%7B4%7D)
Deflection = 0.15 in
We know that deflection of the beam in this case is given as
Δ = ![\frac{PL^{3} }{48EI}](https://tex.z-dn.net/?f=%5Cfrac%7BPL%5E%7B3%7D%20%7D%7B48EI%7D)
![0.15 = \frac{4000(60)^{3} }{48 E (1.40625)}](https://tex.z-dn.net/?f=0.15%20%3D%20%5Cfrac%7B4000%2860%29%5E%7B3%7D%20%7D%7B48%20E%20%281.40625%29%7D)
E = 85.33 ×
![\frac{lbm}{in^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7Blbm%7D%7Bin%5E%7B2%7D%20%7D)
This is the value of Modulus of elasticity.
Beam deflection is = 0.15 in
Answer:
more than 10 joules jjsjdnjdfjnfjfnjfnnfndnndjnfjgngjntjfjmrmdkdmjd
Answer:
80 kW; 11 kW; 8 kW; 0.6
Explanation:
Part 1
Isentropic turbine efficiency:
![\eta_t = \frac{\text{Real turbine work}}{\text{isentropic turbine work}} = \frac{W_{real}}{W_s}](https://tex.z-dn.net/?f=%5Ceta_t%20%3D%20%5Cfrac%7B%5Ctext%7BReal%20turbine%20work%7D%7D%7B%5Ctext%7Bisentropic%20turbine%20work%7D%7D%20%3D%20%5Cfrac%7BW_%7Breal%7D%7D%7BW_s%7D%20)
![W_{real} = \eta_t*W_s](https://tex.z-dn.net/?f=W_%7Breal%7D%20%3D%20%5Ceta_t%2AW_s%20)
![W_{real} = 0.8*100 kW](https://tex.z-dn.net/?f=W_%7Breal%7D%20%3D%200.8%2A100%20kW%20)
![W_{real} = 80 kW](https://tex.z-dn.net/?f=W_%7Breal%7D%20%3D%2080%20kW%20)
Part 2
Coefficient of performance COP is defined by:
![COP = \frac{Q_{out}}{W}](https://tex.z-dn.net/?f=COP%20%3D%20%5Cfrac%7BQ_%7Bout%7D%7D%7BW%7D%20)
![Q_{out} = W*COP](https://tex.z-dn.net/?f=Q_%7Bout%7D%20%3D%20W%2ACOP)
![Q_{out} = 5 kW*2.2](https://tex.z-dn.net/?f=Q_%7Bout%7D%20%3D%205%20kW%2A2.2)
![Q_{out} = 11 kW](https://tex.z-dn.net/?f=Q_%7Bout%7D%20%3D%2011%20kW)
Part 3
(a)
Energy balance for a refrigeration cycle gives:
![Q_{in} + W = Q_{out}](https://tex.z-dn.net/?f=Q_%7Bin%7D%20%2B%20W%20%3D%20Q_%7Bout%7D%20)
![3 kW + 5 kW = Q_{out}](https://tex.z-dn.net/?f=3%20kW%20%2B%205%20kW%20%3D%20Q_%7Bout%7D%20)
![8 kW = Q_{out}](https://tex.z-dn.net/?f=8%20kW%20%3D%20Q_%7Bout%7D%20)
(b)
![COP = \frac{Q_{in}}{W}](https://tex.z-dn.net/?f=COP%20%3D%20%5Cfrac%7BQ_%7Bin%7D%7D%7BW%7D%20)
![COP = \frac{3 kW}{5 kW}](https://tex.z-dn.net/?f=COP%20%3D%20%5Cfrac%7B3%20kW%7D%7B5%20kW%7D%20)
![COP = 0.6](https://tex.z-dn.net/?f=COP%20%3D%200.6%20)
Answer:
Every part has been answered with complete detail. See the pictures.
Explanation:
See the pictures for detailed answer.