The answer for the following problem is mentioned below.
- <u><em>Therefore the time period is 0.02 seconds.</em></u>
Explanation:
Frequency:
The number of waves that pass a fixed place in a given amount of time. (or)
The number of waves that pas by per second.
The SI unit of the frequency is Hertz(Hz).
Time period:
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds. (s)
Given:
Frequency (f) = 39.5 Hz
To calculate:
Time period (T)
We know;
According to the problem;
From the problem;
<u>f = </u>
<u></u>
Where;
f represents the frequency
T represents the time period
f = 
f = 0.02 seconds
<u><em>Therefore the time period is 0.02 seconds.</em></u>
The change in the total energy of the object is zero (0).
The given parameters:
work done by the machine, W = 50 J
mass of the object, m = 10 kg
To find:
the change in the total energy of the object
The change in the total energy of the object is the difference between the objects initial energy due to its position and the work done on the object.
Based on work energy-theory, the work done on the object is equal to the energy of the object.
- The energy of the object = work-done on the object
- The change in total energy = 50 J - 50 J = 0
Thus, the change in the total energy of the object is zero (0).
Learn more here: brainly.com/question/20377140
Hello! There are many indicators to show a sign that a chemical reaction has occured. These are 3 as followed.
1. An odor is produced.
2. A change in temperature.
3. A color change.
Others can be a formation of a solid or a gas.
Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:

My guess is either they come to a stop when they come in contact, or one ball is going to go the opposite direction.