Explanation:
We will calculate the gravitational potential energy as follows.

= 
= 1164000 J
or, = 1164 kJ (as 1 kJ = 1000 J)
Now, we will calculate the change in potential energy as follows.

=
= 
= -873000 J
or, = -873 kJ
Thus, we can conclude that change in gravitational potential energy is -873 kJ.
Answer:
4.1 m
Explanation:
10 kW = 10000 W
20mi/h = 20*1.6 km/mi = 32 km/h = 32 * 1000 (m/km) *(1/3600) hr/s = 8.89 m/s
The power yielded by the wind turbine can be calculated using the following formula

where
is the air density, v = 8.89 m/s is the wind speed, A is the swept area and
is the efficiency



The swept area is a circle with radius r being the blade length



It is same as calculating maths for math
Answer:
Explanation:
i )
When it is disconnected with the battery , the charge stored in it becomes fixed . When the plate distance becomes half , its capacitance becomes twice from C to 2C . Let charge stored in it at the time of disconnection from battery be Q . Let plate separation reduces from d to d / 2
So charged stored in it will remain unchanged .
ii )
Potential difference = charge / capacitance
in the first case potential difference = Q / C
in the second case potential difference = Q / 2C
So potential difference becomes half .
iii ) electric field = potential diff / plate separation
in the first case electric field = Q / (d x C )
in the second case electric field = 2 Q / (d x 2C)
= Q / (d x C )
So electric field remains unchanged .
iv)
energy stored in first case = Q² / 2C
In the second case energy stored = Q² / 2x2C
so energy stored becomes half .
Answer:
B
Explanation:
From Newton's law of motion, we have:
V^2 = U^2 + 2gH
Where V and U are final and initial velocity respectively.
H is the height.
For the object to have a sustain a maximum height it means the final velocity of the object is zero.
By computing the height of the object sustain by A, we have:
0^2 = 2^2 -2×10×H
0= 4 -20H
4 = 20H;
H= 0.2m
For object B we have;
0^2 = 1^2 -2×10×H
0 = 1 -20H
H = 1/20= 0.05m
From computing the height sustain by both objects, we see object B is projected at a shorter height into atmosphere than A.
Hence object B will return to the ground first.