A) 350 J
- The initial internal energy of the cup is
- The final internal energy of the cup is

According to the first law of thermodynamics:

where
Q is the heat absorbed by the system
W is the work done on the system
The work done on the system in this case is 0, so we can rewrite the equation as

And so we find the heat transferred

B) IN the cup
Explanation:
in this situation, we see that the internal energy of the cup increases. The internal energy of an object/substance is proportional to its temperature, so it is a measure of the average kinetic energy of the molecules of the object/substance. Therefore, in this case, the temperature (and the energy of the molecules of the substance) has increased: this means that heat has been transferred INTO the system from the environment (the heat came from the sun).
<span> B. A person moving a ball through a stream of water</span>
Answer is 1 molecule of S
Answer:
The object will move to Xfinal = 7.5m
Explanation:
By relating the final velocity of the object and its acceleration, I can obtain the time required to reach this velocity point:
Vf= a × t ⇒ t= (7.2 m/s) / (4.2( m/s^2)) = 1,7143 s
With the equation of the total space traveled and the previously determined time I can obtain the end point of the object on the x-axis:
Xfinal= X0 + /1/2) × a × (t^2) = 3.9m + (1/2) × 4.2( m/s^2) × ((1,7143 s) ^2) =
= 3.9m + 3.6m = 7.5m
Answer: D
Explanation:
Kinetic energy = 1/2mV^2
From the formula above, we can deduce that kinetic energy is proportional to the square of speed. That is,
K.E = V^2
Graphically, the relationship isn't linear but a positive exponential. Therefore, option D is the correct answer.