Complete question is;
A rocket ship starts from rest and turns on its forward booster rockets, causing it to have a constant acceleration of 4 m/s² rightward. After 3s, what will be the velocity of the rocket ship?
Answer:
v = 12 m/s
Explanation:
We are given;
Initial velocity; u = 0 m/s (because ship starts from rest)
Acceleration; a = 4 m/s²
Time; t = 3 s
To find velocity after 3 s, we will use Newton's first equation of motion;
v = u + at
v = 0 + (4 × 3)
v = 12 m/s
Answer:
Max speed = 
Max acceleration = 
Explanation:
Given the description of period and amplitude, the SHM could be described by:

and its angular velocity can be calculated doing the derivative:

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = 
The acceleration is found from the derivative of the velocity expression, and therefore given by:

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = 
Answer:
50%
Explanation:
Humidity is the amount water vapor present in the atmosphere.
Relative humidity is defined as the ratio of partial water vapor present in air to the actual water vapor at a particular temperature. It is expressed in percentage and the higher the percentage RH, the more the saturated water vapor present in the atmosphere and vice versa.
It is expressed mathematically as shown;
RH = actual water vapor in air/saturated water vapor × 100%
If the actual water vapor in the air was 4 grams per cubic meter and the air's capacity to hold water vapor was 8 grams per cubic meter
Actual water vapor = 4g/cm³
Air's water capacity (saturated water vapor) = 8g/cm³
RH = 4/8×100
RH = 50%
Answer:
i wish i knew your answer.
Explanation: