Answer:
All of them affect the DNA
Explanation:
Chemicals are compounds that can pass through cell membranes and modificate the DNA, elevated temperatures can denaturalize the cell and therefore damage the DNA, ionizing radiation can pass through cell organelles and reach the nucleus affecting the DNA, and viruses inject its DNA into the genome and modify it.
Answer:
0.0253 M/s
Explanation:
From the reaction
N₂ + 3H₂ → 2NH₃
The rate of reaction can be written as
Rate = -
= -
= + ![\frac{1}{2} \frac{d[NH_3]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Bd%5BNH_3%5D%7D%7Bdt%7D)
From the above rate equation we can conclude that the rate of reaction of N₂ is equal to one third of the rate of reaction of H₂,
So,
Rate of reaction of molecular nitrogen = 
Upon calculation, we get rate of reaction of molecular nitrogen = 0.0253 M/s
Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>