Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.
Answer:
Explanation:
FIND THE SOLUTION IN THE ATTACHMENT
Answer:
Coefficient of 
Coefficient of
=8
Explanation:
We are given that a reaction in which
reacts with 
We have to find the coefficient of each reactants in balanced reaction

Coefficient is defined the constant value multiplied with a reactant in a reaction.
Coefficient of
=3
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of KOH=2
Hence, Coefficient of
and coefficient of 
Answer:
The three-step synthesis of trans-2-pentene from acetylene is as follows.
<u>Step -1:</u> Formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkanes.
<u>Step -2:</u> Formation terminal alkyne to nonterminal alkynes.
<u>Step -3:</u> Formation of trans-pent - 2-pent-ene by reduction.
Explanation:
Synthesis of trans-pent-2-yne from ethyne takes place is mainly a three step synthesis which involves formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkane. Second step involves the further alkylation of terminal alkynes to higher order nonterminal alkynes and the third step involves the formation of trans-2-ene by dissolving reduction method.
The chemical reaction of each step of chemical reactions is as follows.
It is harder to remove an electron from fluorine than from carbon because the size of the nuclear charge in fluorine is larger than that of carbon.
The energy required to remove an electron from an atom is called ionization energy.
The ionization energy largely depends on the size of the nuclear charge. The larger the size of the nuclear charge, the higher the ionization energy because it will be more difficult to remove an electron from the atom owing to increased electrostatic attraction between the nucleus and orbital electrons.
Since fluorine has a higher size of the nuclear charge than carbon. More energy is required to remove an electron from fluorine than from carbon leading to the observation that; it is harder to remove an electron from fluorine than from carbon.
Learn more: brainly.com/question/16243729