Answer:
0.752 m/s
Explanation:
m1 = 3.00kg
u1 = 5.05m/s
m2 = 2.76kg
u2 = -3.66m/s
According to the law of conservation of momentum,
m1u1 + m2u2 = (m1+m2)v
3(5.05) + 2.76(-3.66) = (5.05+2.76)v
15.15 - 9.2736 = 7.81v
5.8764 = 7.81v
v = 5.8764/7.81
v = 0.752m/s
Answer:
Explanation:
Temperature is the degree of hotness or coldness of a body.
Energy is the ability to do work by a body. They are of two forms, potential and kinetic energy. Potential energy is due to the position of a body whereas kinetic energy is due to the motion of a body.
Motion is the change in position of a body with time.
Temperature, energy and motion are all related.
Thermal energy is a form of kinetic energy which is concerned about the motion particles. This form of energy results from heat changes in a body which causes temperature differences.
When a body is heat and changes temperature, the particles begins to vibrate as they gain, thermal energy, a form of kinetic energy. At a point, the particles will break lose and set in motion.
The answer is "heat transfer."
Faster than. Hope this helps!!!
We are given
E = <span>2.64 × 10-21 J
h = </span><span>6.6 × 10-34 J s
The options given below are frequencies, therefore, the question must be asking about the frequency fo the given wave
The equation is
E = h f
Simply substitute and solve for f which is the frequency
f = </span>2.64 × 10-21 J / 6.6 × 10-34 J s
f = <span>4.00 × 1012<span> hertz</span></span>