Answer:
3.74g of ethylene glycol must be added to decrease the freezing point by 0.400°C
Explanation:
One colligative property is the freezing point depression due the addition of a solute. The equation is:
ΔT=Kf*m*i
<em>Where ΔT is change in temperature = 0.400°C</em>
<em>Kf is freezing point constant of the solvent = 1.86°C/m</em>
<em>m is molality of the solution (Moles of solute / kg of solvent)</em>
<em>And i is Van't Hoff constant (1 for a nonelectrolyte)</em>
Replacing:
0.400°C =1.86°C/m*m*1
0.400°C / 1.86°C/m*1 = 0.215m
As mass of solvent is 280.0g = 0.2800kg, the moles of the solute are:
0.2800kg * (0.215moles / 1kg) = 0.0602 moles of solute must be added.
The mass of ethylene glycol must be added is:
0.0602 moles * (62.10g / mol) =
3.74g of ethylene glycol must be added to decrease the freezing point by 0.400°C
<em />
Explanation:
As
is a covalent compound because it is made up by the combination of two non-metal atoms. Atomic number of an iodine atom is 53 and it contains 7 valence electrons as it belongs to group 17 of the periodic table.
Therefore, sharing of electrons will take place when two iodine atoms chemically combine with each other leading to the formation of a covalent bonding.
Hence, weak forces like london dispersion forces will be present between a molecule of
.
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
thus, we can conclude that london dispersion force is the major attractive force that exists among different
molecules in the solid.
I'm not sure on this I'm sorry I can't help you I wish I could!
Answer:Rocket is lauched for first one, Second one is the wagon one and third one is seabelt impact.
Explanation: