<span>Groups are vertical, numbered 1 through 18, and have similar properties, so answer D. Most of the properties of groups are defined by the outermost electron in the shells of the elements. Horizontal delineations in the Periodic Table are known as periods.</span>
Answer: Strictly a laboratory analysis and can only be done using the data obtained during analysis
Explanation:
To find a solution to this problem, you need to use the data collected during the lab work. A guide could be finding the possible forms of hydrated copper chlorides in reference books. Since it's also a lab work, you can definitely compare your data with lab mates.
The formula CuxCly.zH₂O and its name chloride hydrate already gives you an idea of the possibilities of the value of the integers, hence you can take a good guess for the identity of the unknown salt and calculate the theoretical formular weight for it. From the that you can proceed to also find the mass of water and copper from your lab analysis.
In an ionic bond, electrons are transferred from one stone to another atom (shared).
The question is incomplete. The complete question is:
Calcium Carbide (CaC₂) is an unusual substance that contains a carbon anion (C₂²⁻). The reaction with water involves several steps that occur in rapid succession. CaC2 is a salt (notice that its name is similar to sodium chloride). When a salt dissolves in water, ions leave the crystal lattice and enter the aqueous (aq) solution. Write the relevant balanced chemical equation for the dissolution of CaC₂, in water.
Answer:
CaC₂(s) + 2H₂O(l) → Ca(OH)₂(aq) + C₂H₂(aq)
Explanation:
When a salt dissolves in water, it dissociates in its ions. In the Calcium Carbide, the cation is Ca⁺² and the anion is C₂²⁻, so the reaction is:
CaC₂(s) + 2H₂O(l) → Ca(OH)₂(aq) + C₂H₂(aq)
The base Ca(OH)₂ is soluble, so it will dissociate at Ca⁺ and OH⁻, but the C₂H₂ is stable and doesn't dissociate in the solution.