Answer:
Calcium is heavier a little bit
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
You have a. 3, b. 2, e. 6, f. 3, i. 1
In a chemical reaction, matter can neither be created nor destroyed, so the products that come out of a reaction must equal the reactants that go into a reaction. Stoichiometry is the measure of the elements within a reaction.[1] It involves calculations that take into account the masses of reactants and products in a given chemical reaction. Stoichiometry is one half math, one half chemistry, and revolves around the one simple principle above - the principle that matter is never lost or gained during a reaction. The first step in solving any chemistry problem is to balance the equation.
<span>
</span>
<span> A </span>catalyst<span> will </span>appear<span> in the steps of a </span>reaction<span> mechanism, but it will not </span>appear<span> in the overall </span><span>chemical reaction</span>