I believe the answer is Caloric Theory
Answer:
Explanation:
According to Bronsted-Lowry acids or base theory , the reagent capable of giving hydrogen ion or proton will be acid and that which accepts hydrogen ion or proton will be base .
C₉H₇N + HNO₂ ⇄ C₉H₇NH⁺ + NO₂⁻
If K > 1 , reaction is proceeding from left to right .
Hence HNO₂ is giving H⁺ or proton and C₉H₇N is accepting proton to form
C₉H₇NH⁺ .
Hence HNO₂ is bronsted acid and C₉H₇N is bronsted base .
B )
when K < 1 , reaction above proceeds from right to left . That means
C₉H₇NH⁺ is giving H⁺ so it is a bronsted acid and NO₂⁻ is accepting H⁺ so it is a bronsted base .
Hence , NO₂⁻ is a bronsted base and C₉H₇NH⁺ is a bronsted acid .
The molar mass of the unknown compound is calculated as follows
let the unknown gas be represented by letter Y
Rate of C2F4/ rate of Y = sqrt of molar mass of gas Y/ molar mass of C2F4
= (4.6 x10^-6/ 5.8 x10^-6) = sqrt of Y/ 100
remove the square root sign by squaring in both side
(4.6 x 10^-6 / 5.8 x10^-6)^2 = Y/100
= 0.629 =Y/100
multiply both side by 100
Y= 62.9 is the molar mass of unknown gas
In the given above, we have two densities which are 0.89 g/mL and 0.72 g/mL. We are also given that the liquids are immiscible. After the settlement of the liquids, they will form two layers.
The heavier substance, the one which has a higher density will be at the bottom and the lighter substance, the one which has a lower density will be at the top layer.
Answer:
Chemical reactions are balanced by adding coefficients so that the number of atoms of each element is the same on both sides. Stoichiometry describes the relationship between the amounts of reactants and products in a reaction.
Explanation: