Answer:
The answer is 0.36 kg/s NO
Explanation:
the chemical reaction of NH3 to NO is as follows:
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
We have the following data:
O2 Volume rate = 645 L/s
P = 0.88 atm
T = 195°C + 273 = 468 K
NO molecular weight = 30.01 g/mol
we calculate the moles found in 645 L of O2:
P*V = n*R*T
n = P*V/R*T
n= (0.88 atm * 645L/s)/((0.08205 L*atm/K*mol) * 468 K) = 14.78 moles of O2
With the reaction we can calculate the number of moles of NO and with its molecular weight we will have the rate of NO:
14.78 moles/s O2 * 4 molesNO/5 molesO2 * 30.01 g NO/1 molNO x 1 kgNO/1000 gNO = 0.36 kg/s NO
Amplifiers and watts and decibels <span />
The arrangement of electron pairs around CH4 and NH3, According to the VSEPR model is the same, because in each case there are the same number of electron pairs around the central atom. So the NH3 and CH4 arrangement of electron pairs is the same because in each case there are the same number of electron pairs around the central atom.
<span>1.05 g/ml * 1000 ml = 1050g/l because of 1g/ml = 1 kg/l
so, a/q
mass of 4.7 l of whole blood in pound =
4.7 * 1050 = 4935 g
so in pound
4935g = 10.87981p</span>