Answer:

Explanation:
1 mole of any substance contains the same number of particles. The particles can vary (atoms, molecules, formula units), but there are always 6.022*10²³ particles. In this case, the particles are formula units of potassium nitrate or KNO₃.
Let's create a ratio.

Since we are trying to find the formula units in 0.250 moles, we multiply by that number.

The units of moles of potassium nitrate cancel.

The denominator of 1 can be ignored, so we can make a simple multiplication problem.


If we round to the nearest tenth, the 0 in the hundredth place tells us to leave the 5 in the tenth place.

0.250 moles of potassium nitrate is approximately equal to 1.5*10²³ formula units of potassium nitrate and choice B is correct.
When any atom loses two charged particles, it becomes an ion, with a charge opposite of the particles it lost. Ions will attempt to join up with other ions in ionic bonds, held together by the opposite charges of the atoms.
Answer: 596 atm
Explanation:
Given that,
Original pressure of balloon P1 = 3atm
Original temperature of balloon T1 = 298K
New pressure of balloon P2 = 6atm
New temperature of balloon T2 = ?
Since pressure and temperature are given while volume is constant, apply the formula for Pressure law
P1/T1 = P2/T2
3 atm / 298K = 6 atm / T2
To get the value of T2, cross multiply
3 atm x T2 = 6 atm x 298K
3 atmT2 = 1788 atmK
Divide both sides by 3 atm
3 atmT2 / 3 atm = 1788 atmK / 3 atm
T2 = 596 atm
Thus, a temperature of 596 atmospheres is required to increase the pressure to 6 atm.
C. Move one electron from sodium to fluorine, because the element with the smallest amount of valence electrons is the one that give away the electrons, it is easier to add one to seven than it is to add 7 to one. I just learned this in physics, hope it helps! If you need more explaining I can do that.