(4) a metal sphere with a charge of 1.0 × 10^−9 C <span>moved through a potential difference of 4.0 V would undergo the greatest change in electrical energy from the list. </span>
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s

Actually Welcome to the Concept of the Methods of Separation.
Evaporation and Decantation are the process which can be easily used to remove the Soluble Impurities.
Answer:
the force of gravity between them is quadrupled .
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces.