The constant in Newton's law of gravitation relating gravity to the masses and separation of particles, equal to 6.67 × 10-11N m2 kg-2.
Answer:
A
Explanation:
this because
gravitational potential energy = mass x height x gravitational field strength
so let's assume mass is 2 kg and gravitational field strength is 10 N /kg
so when height is very low, take it as 3 m
gravitational potential energy= 2 x 3 x 10 = 60 j
but when height is 6m
gravitational potential energy = 2 x 6 x 10 = 120 j
so when the height is the greatest, the gravitational potential energy is the highest
so A is the heighest so it has the highest gravitational potential energy.
hope this helps
please mark it brainliest :D
Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²
Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
The statements of both students are incorrect.
-- Electrical power, just like mechanical power, is expressed in units of watts.
-- 'Coulomb' is the unit of electrical charge.
-- '400 k ohms' means 400,000 ohms of resistance.
-- 'Volt' is the unit of electromotive force (or potential difference).
There are no 'following statements'.
All in all, a very disappointing question.