Answer:
the answer would be ;B compare the volumes of the three cylinders
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
Answer:
Any of the six chemical elements that markup group1
of the periodic table.
Explanation:
Answer:
I can't draw diagrams on this web site but I can do with numbers I think. So an electron is moved from n = 1 to n = 5. I'm assuming I've interpreted the problem correctly; if not you will need to make a correction. I'm assuming that you know the electron in the n = 1 state is the ground state so the 4th exited state moves it to the n = 5 level.
n = 5 4th excited state
n = 4 3rd excited state
n = 3 2nd excited state
n = 2 1st excited state
n = 1 ground state
Here are the possible spectral lines.
n = 5 to 4, n = 5 to 3, n = 5 to 2, n = 5 to 1 or 4 lines.
n = 4 to 3, 4 to 2, 4 to 1 = 3 lines
n = 3 to 2, 3 to 1 = 2 lines
n = 2 to 1 = 1 line. Add 'em up. I get 10.
b. The Lyman series is from whatever to n = 1. Count the above that end in n = 1.
c.The E for any level is -21.8E-19 Joules/n^2
To find the E for any transition (delta E) take E for upper n and subtract from the E for the lower n and that gives you delta E for the transition.
So for n = 5 to n = 1, use -Efor 5 -(-Efor 1) = + something which I'll leave for you. You could convert that to wavelength in meters with delta E = hc/wavelength. You might want to try it for the Balmer series (n ending in n = 2). I think the red line is about 650 nm.
Explanation:
The molecular formula :
C₆H₁₄O₃PF
<h3>Further explanation</h3>
Given
39.10% carbon, 7.67% hydrogen, 26.11% oxygen, 16.82% phosphorus, and 10.30% fluorine.
Required
The molecular formula
Solution
mol ratio :
C = 39.1 : 12 = 3.258
H = 7.67 : 1 = 7.67
O = 26.11 : 16 = 1.632
P = 16.82 : 31 = 0.543
F = 10.3 : 19 = 0.542
Divide by 0.542
C = 6
H : 14
O = 3
P = 1
F = 1
The empirical formula :
C₆H₁₄O₃PF
(The empirical formula)n = the molecular formula
(C₆H₁₄O₃PF)=184.1
(6.12+14.1+3.16+31+19)n=184.1
(184)n=184.1
n = 1