Answer:
Explanation:
400 W = 400 J/s
300000 J / 400 J/s = 750 s or 12.5 minutes
v = v₀ + at
v = final speed, v₀ = initial speed, a = acceleration, t = elapsed time
Given values:
v₀ = 0m/s (starts from rest), a = 9.81m/s², t = 3s
Plug in and solve for v:
v = 0 + 9.81(3)
v = 29.4m/s
The answer is B friction force
Answer:
r = 58.44 [m]
Explanation:
To solve this problem we must use the following equation that relates the centripetal acceleration with the tangential velocity and the radius of rotation.
a = v²/r
where:
a = centripetal acceleration = 15.4 [m/s²]
v = tangential speed = 30 [m/s]
r = radius or distance [m]
r = v²/a
r = 30²/15.4
r = 58.44 [m]
The question ask to find and calculate the induced current in the loop as a function time and the best answer would be that the induced current in the loop is 0.08 amperes. I hope you are satisfied with my answer and feel free to ask for more if you have clarifications and further questions