Recall that the magnitude of the acceleration
of a particle moving with speed
in a circular path around a point at a distance
away from the particle is given by

So, the satellite has velocity

pointing in the direction tangent to the circular path.
Answer:
Option (3)
Explanation:
Formula used to calculate acceleration is,
F = ma
Where F = force exerted on a mass
m = mass
a = acceleration due to force exerted on the mass
Option (1),
When F = 100 N and m = 100 kg
100 = 100a
a = 1 m per sec²
Option (2)
For F = 1 N and m = 100 kg
1 = 100a
a = 
a = 0.01 m per sec²
Option (3)
For F = 100 N and m = 1 kg
100 = 1(a)
a = 100 m per sec²
Option (4)
For F = 1 N and m = 1 kg
1 = 1(a)
a = 1 m per sec²
Therefore. acceleration in Option (3) is the maximum.
Answer:
They will run parallel to each other as the none of a straight pole cannot be bent in such a way where one side can turn without the other turning.
The speed of sound is greater in ice (4000 m/s), then in water (1500 m/s), then in air (340 m/s). The explanation for this is the differente state of the matter in the three cases.
In fact, sound waves travel faster in solids (like ice), then in liquids (like water), then in gases (like air). This is because the speed of the sound wave depends on the density of the medium: the greater the density, the faster the sound wave. This can be easily understood by thinking at how a sound wave propagates: a sound wave is a vibration of molecules, which is transmitted throughout the medium by collision of the molecules. Therefore, the smaller the spacing between the molecules (such as in solids), the more efficient is the propagation, and so the sound wave is faster. On the contrary, there is a large spacing between molecules in gases (such as in the air), so there are less collisions between the molecules and so the wave is not transmitted efficiently, and so it has less velocity.
He doesn't lose weight he stays the same weight it's just gravity that changes