initially marry go round is at rest
after t= 2 minutes its final angular speed is 4 rpm
![w_f = 2 \pi *\frac{4}{60}](https://tex.z-dn.net/?f=w_f%20%3D%202%20%5Cpi%20%2A%5Cfrac%7B4%7D%7B60%7D)
![w_f = 0.42 rad/s](https://tex.z-dn.net/?f=w_f%20%3D%200.42%20rad%2Fs)
now by using kinematics we will have
![w_f = w_0 + \alpha * t](https://tex.z-dn.net/?f=w_f%20%3D%20w_0%20%2B%20%5Calpha%20%2A%20t)
![0.42 = 0 + \alpha * (2*60)](https://tex.z-dn.net/?f=0.42%20%3D%200%20%2B%20%5Calpha%20%2A%20%282%2A60%29)
![\alpha = 3.5 * 10^{-3} rad/s^2](https://tex.z-dn.net/?f=%5Calpha%20%3D%203.5%20%2A%2010%5E%7B-3%7D%20rad%2Fs%5E2)
![\alpha = 3.5 * 10^{-3} * \frac{60*60}{2\pi}](https://tex.z-dn.net/?f=%5Calpha%20%3D%203.5%20%2A%2010%5E%7B-3%7D%20%2A%20%5Cfrac%7B60%2A60%7D%7B2%5Cpi%7D)
![\alpha = 2 rev/min^2](https://tex.z-dn.net/?f=%5Calpha%20%3D%202%20rev%2Fmin%5E2)
Answer:
![\Delta p_x=7.75\times 10^{-25}\ kg-m/s](https://tex.z-dn.net/?f=%5CDelta%20p_x%3D7.75%5Ctimes%2010%5E%7B-25%7D%5C%20kg-m%2Fs)
Explanation:
Given that,
The uncertainty in the position of an electron along the x-axis is, ![\Delta x=68\ pm=68\times 10^{-12}\ m](https://tex.z-dn.net/?f=%5CDelta%20x%3D68%5C%20pm%3D68%5Ctimes%2010%5E%7B-12%7D%5C%20m)
We need to find the east uncertainty in any simultaneous measurement of the momentum component of this electron.
We know that the Heisenberg's uncertainty principle gives the relation between the uncertainty in position and the momentum of electron as :
![\Delta p_x{\cdot}\Delta x\ge \dfrac{h}{4\pi }](https://tex.z-dn.net/?f=%5CDelta%20p_x%7B%5Ccdot%7D%5CDelta%20x%5Cge%20%5Cdfrac%7Bh%7D%7B4%5Cpi%20%7D)
Putting all the values, we get :
![\Delta p_x{\cdot}\ge \dfrac{h}{4\pi \Delta x}\\\\\Delta p_x \ge \dfrac{6.63\times 10^{-34}}{4\pi \times 68\times 10^{-12}}\\\\\Delta p_x\ge 7.75\times 10^{-25}\ kg-m/s](https://tex.z-dn.net/?f=%5CDelta%20p_x%7B%5Ccdot%7D%5Cge%20%5Cdfrac%7Bh%7D%7B4%5Cpi%20%5CDelta%20x%7D%5C%5C%5C%5C%5CDelta%20p_x%20%5Cge%20%5Cdfrac%7B6.63%5Ctimes%2010%5E%7B-34%7D%7D%7B4%5Cpi%20%5Ctimes%2068%5Ctimes%2010%5E%7B-12%7D%7D%5C%5C%5C%5C%5CDelta%20p_x%5Cge%207.75%5Ctimes%2010%5E%7B-25%7D%5C%20kg-m%2Fs)
So, the momentum component of this electrons is greater than
.
Answer:
<h3>The answer is 50 kg</h3>
Explanation:
The mass of the object can be found by using the formula
![m = \frac{f}{a} \\](https://tex.z-dn.net/?f=m%20%3D%20%20%5Cfrac%7Bf%7D%7Ba%7D%20%20%5C%5C%20)
where
f is the force
a is the acceleration
We have
![m = \frac{250}{5} \\](https://tex.z-dn.net/?f=m%20%3D%20%20%5Cfrac%7B250%7D%7B5%7D%20%20%5C%5C%20)
We have the final answer as
<h3>50 kg</h3>
Hope this helps you
Answer:
hey. i dont know what you tryna say but if u replying to someone else, you should use the comments section. in that way you won't lose points.