The velocity of the package after it has fallen for 3.0 s is 29.4 m/s
From the question,
A small package is dropped from the Golden Gate Bridge.
This means the initial velocity of the package is 0 m/s.
We are to calculate the velocity of the package after it has fallen for 3.0 s.
From one of the equations of kinematics for objects falling freely,
We have that,
v = u + gt
Where
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
and t is time
To calculate the velocity of the package after it has fallen for 3.0 s
That means, we will determine the value of v, at time t = 3.0 s
The parameters are
u = 0 m/s
g = 9.8 m/s²
t = 3.0 s
Putting these values into the equation
v = u + gt
We get
v = 0 + (9.8×3.0)
v = 0 + 29.4
v = 29.4 m/s
Hence, the velocity of the package after it has fallen for 3.0 s is 29.4 m/s
Learn more here: brainly.com/question/13327816
C. Slamming on the brakes to come to a stop at a stop sign. Here you are Decelerating.
8 meters per second. To find velocity is to divide distance by total time. so 400/50.
Answer:
body will stop moving if the gravity will be equal to the tension produced in the string so both the forces will cancel the influence of each other leading to the state when the body is in equilibrium
Frequency is inversely proportional to wavelength.
Wavelength is the spacial period, and more generally the frequency is inversely proportional to the period.
If the wave's speed if c, then f=c/l where l is the wavelength.