Answer:
The maximum water pressure at the discharge of the pump (exit) = 496 kPa
Explanation:
The equation expressing the relationship of the power input of a pump can be computed as:

where;
m = mass flow rate = 120 kg/min
the pressure at the inlet
= 96 kPa
the pressure at the exit
= ???
the pressure
= 1000 kg/m³
∴




400000 = P₂ - 96000
400000 + 96000 = P₂
P₂ = 496000 Pa
P₂ = 496 kPa
Thus, the maximum water pressure at the discharge of the pump (exit) = 496 kPa
Answer:
why you doin this
Explanation:
is this so we get free points?
Answer:
You need a 120V to 24V commercial transformer (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)
Step by step design:
- Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer. 120 Vrms = 85 V and 24 Vrms = 17V = Vin
- Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
- Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA
Our circuit meet the average voltage (Va) specification:
Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it
Answer:
System analysis can be defined as a deep analysis of a part of the structure of a module that has been designed before. System design means to make any module or a part of the structure from scratch and build it completely without estimation.
Explanation:
Answer: The answer is four; four
Explanation: This is because of the mixture of material used and the number of directions it causes strain I directly proportional to the number of times it causes stress.