1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ella [17]
4 years ago
10

Design a half-wave recti er which provides a peak voltage of 15 V, and anaverage voltage of 3.8 V when driven by a 120 V (rms) a

c voltage supply

Engineering
1 answer:
nirvana33 [79]4 years ago
6 0

Answer:

You need a 120V to 24V commercial transformer  (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)

Step by step design:

  1. Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer.  120 Vrms = 85 V and 24 Vrms = 17V = Vin
  2. Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
  3. Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA

Our circuit meet the average voltage (Va) specification:

Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it

You might be interested in
Briefly explain how each of the following influences the tensile modulus of a semicrystalline polymer and why:(a) molecular weig
marin [14]

Answer:

(a) Increases

(b) Increases

(c) Increases

(d) Increases

(e) Decreases

Explanation:

The tensile modulus of a semi-crystalline polymer depends on the given factors as:

(a) Molecular Weight:

It increases with the increase in the molecular weight of the polymer.

(b) Degree of crystallinity:

Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.

(c) Deformation by drawing:

The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.

(d) Annealing of an undeformed material:

This also results in an increase in the tensile strength of the material.

(e) Annealing of  a drawn material:

A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.

5 0
3 years ago
Consider the expansion of a gas at a constant temperature in a water-cooled piston-cylinder system. The constant temperature is
Leona [35]

Answer:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

Explanation:

According to the first thermodynamic law, the energy must be conserved so:

dQ = dU - dW

Where Q is the heat transmitted to the system, U is the internal energy and W is the work done by the system.

This equation can be solved by integration between an initial and a final state:

(1) \int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU - \int\limits^1_2 {} \, dW

As per work definition:

dW = F*dr

For pressure the force F equials the pressure multiplied by the area of the piston, and considering dx as the displacement:

dW = PA*dx

Here A*dx equals the differential volume of the piston, and considering that any increment in volume is a work done by the system, the sign is negative, so:

dW = - P*dV

So the third integral in equation (1) is:

\int\limits^1_2 {- P} \, dV

Considering the gas as ideal, the pressure can be calculated as P = \frac{n*R*T}{V}, so:

\int\limits^1_2 {- P} \, dV = \int\limits^1_2 {- \frac{n*R*T}{V}} \, dV

In this particular case as the systems is closed and the temperature constant, n, R and T are constants:

\int\limits^1_2 {- \frac{n*R*T}{V}} \, dV = -nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Replacion this and solving equation (1) between state 1 and 2:

\int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU + nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT(ln V_{2} - ln V_{1})

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT ln \frac{V_{2}}{V_{1}}

The internal energy depends only on the temperature of the gas, so there is no internal energy change U_{2} - U_{1} = 0, so the heat exchanged to the system equals the work done by the system:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

4 0
4 years ago
A 132mm diameter solid circular section​
Ganezh [65]

Answer:

not sure if this helps but

5 0
3 years ago
Explain why the following scenario fails to meet the criteria for proper reverse engineering.
avanturin [10]

Answer:

he must document or remember the order he took it apart so he put it back together

Explanation:

5 0
2 years ago
Technician A says you should place the air ratchet setting to
Bas_tet [7]
I think it’s b sry if I’m wrong tho
6 0
3 years ago
Other questions:
  • What is the heat flux (W/m2) to an object when subjected to convection heat transfer environment given: 24 °C = the surface temp
    10·1 answer
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • 2.4: Add a method called setValue(), and the description of setValue is: public int setValue(long searchKey) In this method, the
    13·1 answer
  • A torsion member has an elliptical cross section with major and minor dimensions of 50.0 mm and 30.0 mm, respectively. The yield
    10·1 answer
  • ________ is the most theoretical computing discipline, focusing mostly on finding new and better ways for computers to work
    9·1 answer
  • An aircraft is in a steady level turn at a flight speed of 200 ft/s and a turn rate about the local vertical of 5 deg/s. Thrust
    8·1 answer
  • A 1-kW electric resistance heater submerged in 10-kg water is turned on and kept on for 15 min. During the process, 400 kJ of he
    12·1 answer
  • A student lives in an apartment with a floor area of 60 m2 and ceiling height of 1.8 m. The apartment has a fresh (outdoor) air
    14·1 answer
  • Just need someone to talk to pls dont just use me for points
    5·1 answer
  • Drop the name below the corresponding part. (Look at the picture above to answer)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!