1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veseljchak [2.6K]
3 years ago
6

7. The "3 second rule" is the time you should pause at an intersection marked with a stop sign.

Engineering
1 answer:
forsale [732]3 years ago
8 0
A. True because that’s correct
You might be interested in
Advantage of a sheave wheel in a shaft headgear<br>​
NikAS [45]

Answer:

sorry if wrong

Explanation:

One sheave means that you are using a single drum winder. They are the worst! Double drum winders control easier, brake better and are much more efficient. They save time ( two skips or cages) and can be clutched to perform faster shift transport. A single drum is slow, unbalanced and can be a nightmare if it trips out during hoisting. If the brake system is not perfect it can be a real hairy experience. For a runaway single drum, there is no counterbalance effect. It always runs to destruction. With a double drum, the driver still has a chance to control the winder to a certain extent and he has two sets of brakes to rely on. A single sheave could also mean a shaft with a single compartment. No second means of escape unless there are ladders or stairways. Not a very healthy situation.

Those are just a few points. I am sure much more can be said in favor of a double drum winder and two or more sheaves in the headgear. Most of the shafts I have worked at have multiple winders and up to ten compartments. They all have a small single drum service winder for emergencies and moves of personnel during shift times. They are referred to as the Mary - Annes. Apparently, the name originated in the U.K. where an aristocratic mine owner named the first such winder after his mistress.

5 0
2 years ago
A 5-in.-diameter pipe is supported every 9 ft by a small frame consisting of two members asshown. Knowing that the combined weig
jarptica [38.1K]

Answer:

AC: at D , M_max = 12.25 lb-ft

BC: at E , M_max = 8.75 lb-ft

Explanation:

Given:

- The diameter of the pipe d = 5-in

- The pipe is supported every L = 9 ft of pipe in length

- The weight if the pipe + contents W = 10 lb/ft

Find:

determine the magnitude and location of the maximum bending moment in members AC and BC.

Solution:

- The figure (missing) is given in the attachment.

- We will first determine the external forces acting on each member:

             Section: 9-ft section of pipe.

                     Sum of forces perpendicular to member AC = 0

                     F_d - 0.8*W*L = 0

                     F_d = 0.8*10*9 = 72 lb

                     Sum of forces perpendicular to member BC = 0

                     F_e - 0.6*W*L = 0

                     F_e = 0.6*10*9 = 54 lb

              F_d = 72 lb ,  F_e = 54 lb

- Then we will determine the support reactions for each member AC point A and BC point B.

              Section: Entire Frame.

                    Sum of moments about point B = 0

                    -A_y*(18.75/12) + F_d*(d /2*12) + F_e*((11.25-2.5)/12) = 0

                    -A_y*(1.5625) + 15 + 39.375 = 0

                    A_y = 34.8 lb  

                   Sum of forces in vertical direction = 0

                     A_y + B_y - 0.8*F_d - 0.6*F_e = 0

                     B_y = 0.8*(72) + 0.6*(54) - 34.8

                     B_y = 55.2 lb  

                   Sum of forces in horizontal direction = 0

                     A_x + B_x - 0.6*F_d + 0.8*F_e = 0

                     A_x + B_x = 0

               Section: Member AC

                    Sum of moments about point C = 0

                     F_d*(2.5/12) - A_y*(12/12) - A_x*(9/12) = 0

                     72*2.5 - 34.8*12 - 9*A_x = 0

                     A_x = -237.6 / 9 = - 26.4 lb

                     B_x = - A_x = 26.4 lb

                     A_x = -26.4 lb  ,  B_x = 26.4 lb

- Now we will calculate bending moment for each member at different sections.

               Member AC:

                    From point A till just before point D

                     -0.6*A_x*x - A_y*0.8*x + M = 0

                     15.84*x - 27.84*x + M = 0

                      M = 12*x   ..... max value at D, x = 12.25 in

                      M_max = 12*12.25/12 = 12.25 lb-ft

               Member BC:

                    From point B till just before point E

                     -0.8*B_x*x + B_y*0.6*x + M = 0

                     -21.12*x + 33.12*x + M = 0

                      M = -12*x   ..... max value at E, x = 11.25 - 2.5 = 8.75 in

                      M_max = -12*8.75/12 = -8.75 lb-ft

- The maximum bending moments and their locations are:

                      AC: at D , M_max = 12.25 lb-ft

                      BC: at E , M_max = 8.75 lb-ft

5 0
2 years ago
To use wiring diagrams, an understanding of the symbols, abbreviations, and connector coding used in the diagrams
Komok [63]

Answer:

True

Explanation:

6 0
3 years ago
Suppose you were doing an A* search and there were a number of different ways that you could compute an admissible heuristic val
Elodia [21]

Answer:

Explanation:

First of all,we need to know what kind of research and how important it is before determining which computation method to use .

Then compare end result of research and cost of  expensive methods .

Then we should opt for the best expensive method to be used for the given application.

5 0
3 years ago
An adiabatic air compressor compresses 10 L/s of air at 120 kPa and 20 degree C to 1000 kPa and 300 degree C.
Oksana_A [137]

Answer:

work=281.4KJ/kg

Power=4Kw

Explanation:

Hi!

To solve follow the steps below!

1. Find the density of the air at the entrance using the equation for ideal gases

density=\frac{P}{RT}

where

P=pressure=120kPa

T=20C=293k

R= 0.287 kJ/(kg*K)= gas constant ideal for air

density=\frac{120}{(0.287)(293)}=1.43kg/m^3

2.find the mass flow by finding the product between the flow rate and the density

m=(density)(flow rate)

flow rate=10L/s=0.01m^3/s

m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s

3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow

Work

w=Cp(T1-T2)

Where

Cp= specific heat for air=1.005KJ/kgK

w=work

T1=inlet temperature=20C

T2=outlet temperature=300C

w=1.005(300-20)=281.4KJ/kg

Power

W=mw

W=(0.0143)(281.4KJ/kg)=4Kw

5 0
3 years ago
Other questions:
  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage
    15·1 answer
  • A gear box’s shaft is made of a hollow circular steel tube with allowable yield stress equal to σa????????o???? . The shaft is l
    7·1 answer
  • Best use for a suspension bridge
    13·1 answer
  • Ammonia vapor becomes irritating to the<br> nose and throat at a concentration of<br> ___ppm
    10·1 answer
  • A Pitot-static probe is used to measure the speed of an aircraft flying at 3000 m. If the differential pressure reading is 3200
    7·1 answer
  • Four of the minterms of the completely specified function f(a, b, c, d) are m0, m1, m4, and m5.
    6·1 answer
  • Part of the following pseudocode is incompatible with the Java, Python, C, and C++ language Identify the problem. How would you
    12·1 answer
  • Calculate the equivalent capacitance of the three series capacitors in Figure 12-1 A) 0.060 uF B) 0.8 uF C) 0.58 uF D) 0.01 uF
    12·1 answer
  • Considering the analogy between electrical circuit and thermal circuit, show your approach to derive an expression for the therm
    10·1 answer
  • A frying pan is connected to a 150-volt circuit. If the resistance of the frying pan is 25 ohms, how many amperes does the fryin
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!