You have to use the equation PV=nRT.
P=pressure (in this case 1.89x10^3 kPa which equals 18.35677 atm)
1V=volume (in this case 685L)
n=moles (in this case the unknown)
R=gas constant (0.08206 (L atm)/(mol K))
T=temperature (in this case 621 K)
with the given information you can rewrite the ideal gas law equation as n=PV/RT.
n=(18.35677atm x 685L)/(0.08206atmL/molK x 621K)
n=246.8 moles
Answer:
See explaination
Explanation:
Since X is more reactive than Y
=> X is oxidized to X2+ and Y2+ is reduced to Y
Overall cell reaction is:
X(s) + Y2+(aq) => X2+(aq) + Y(s)
please kindly see attachment for further solution.
<span>Answer:
Nothing is balanced in your final equation: not H, not O, not Cr, not I and your charges aren't either.
Start with your 2 half reactions:
I- --> IO3-
Cr2O72- --> 2 Cr3+
Balance O by adding H2O:
I- + 3 H2O --> IO3-
Cr2O72- --> 2 Cr3+ + 7H2O
Balance H by adding H+:
I- + 3 H2O --> IO3- + 6 H+
Cr2O72- + 14 H+ --> 2 Cr3+ + 7H2O
Balance charge by adding e-:
I- + 3 H2O --> IO3- + 6 H+ + 6 e-
Cr2O72- + 14 H+ + 6 e- --> 2 Cr3+ + 7H2O
Since the numbers of electrons in your two half reactions are the same, just add them and simplify to give:
Cr2O72- + I- + 8 H+ --> IO3- + 2 Cr3+ + 4 H2O</span>
Answer:
-1160kj/mol
Explanation:
the reaction is exothermic because heat is released to the environment