The gasoline is charging the the car to move faster
<u>for instance, steel has a higher thermal conductivity than plastic. Hence, the steel plate gives away heat to the ice block faster than a plastic block does. As a result, ice melts faster on a steel plate than on a plastic one. Faster an object draws heat, the colder it feels.</u>
A car driving up a hill at a constant speed experiences no change in its kinetic energy while it's potential energy increases with increasing height, thus none of the options are correct.
Understanding the concept
Consider a car moving up the hill at a constant speed as shown in the figure below. The following forces act on the car:
- N is the normal reaction force acting in an upward direction
- f_s is the static friction force exerted due to friction between the road and the tires of the car
- f_k is the rolling friction force in the direction opposing that of the tire
- mg is the force acting in a downward direction.
- θ is the angle of inclination.
Here as the car is moving up the hill at a constant speed, the net force exerted on the car is zero. Also, the kinetic energy of the car will not change as its velocity is constant and the potential energy will change with increasing height. Thus, none of the given options are correct.
Learn more about motion on an incline here:
<u>brainly.com/question/13513083</u>
#SPJ4
We know that a wave is a disturbance that transfers energy through matter or space There are two main types of waves: Mechanical and Electromagnetic. Water waves are mechanical. A mechanical wave is an oscillation of matter to transfers energy, but you always need a medium (substance such as: solid, liquid, gas, plasma) to transport it. The medium for water waves is, in fact, the water. For example, ripple in water is a surface wave. On the other hand, electromagnetic waves don't need a medium to transport, they can do it through the empty space. Then, this is the major characteristic that makes these two types of waves different.