As the source approaches you, the sound waves are compressed, so
the pitch of the sound is higher than what the source is actually emitting.
Then, after it passes you and begins moving away, the sound waves
are stretched, so the pitch of the sound is lower than what the source
is actually emitting.
Answer:
a) the magnitude of r is 184.62
b) the direction is 37.74° south of the negative x-axis
Explanation:
Given the data in the question;
as illustrated in the image blow;
To find the the magnitude of r, we will use the Pythagoras theorem
r² = y² + x²
r = √( y² + x²)
we substitute
r = √((-113)² + (-146)²)
r = √(12769 + 21316 )
r = √(34085 )
r = 184.62
Therefore, the magnitude of r is 184.62
To find its direction, we need to find ∅
from SOH CAH TOA
tan = opposite / adjacent
tan∅ = -113 / -146
tan∅ = 0.77397
∅ = tan⁻¹( 0.77397 )
∅ = 37.74°
Therefore, the direction is 37.74° south of the negative x-axis
Final speed = initial speed + (acceleration x time)
(final speed - initial speed) = acceleration x time
Time = (final speed - initial speed) / acceleration
The answer is (a) because movement is acceleration
Answer:
A rocket taking off from earth which pushes gasses in one direction and the rocket in
the other