Answer: 0.0164 molar concentration of hydrochloric acid in the resulting solution.
Explanation:
1) Molarity of 0.250 L HCl solution : 0.0328 M

Moles of HCl in 0.250 L solution = 0.0082 moles
2) Molarity of 0.100 L NaOH solution : 0.0245 M

Moles of NaOH in 0.100 L solution = 0.00245 moles
3) Concentration of hydrochloric acid in the resulting solution.
0.00245 moles of NaOH will neutralize 0.00245 moles of HCl out of 0.0082 moles of HCl.
Now the new volume of the solution = 0.100 L +0.250 L = 0.350 L
Moles of HCl left un-neutralized = 0.0082 moles - 0.00245 moles = 0.00575 moles

Molarity of HCl left un-neutralized :
0.0164 molar concentration of hydrochloric acid in the resulting solution.
Answer:
<h2>sorry sorry sorry sorry sorry sorry sorry</h2>
Answer:
b. The molarity of the solution increases
Explanation:
The correct answer is option b, that is the molarity of the solution increases.
Because the molarity is the concentration of the solution and it is explained as the amount of solute in amount of solution.
Solution: is the solute dissolved in solvent.
So if we increases the amount of solute in solvent the concentration in terms of molarity of solution increases and if we increase amount of solvent or water then the concentration or molarity increases.
Suppose we have form a sugar solution of 1 L by adding 4 mole of sugar then what happen
Use the Molarity formula
Molarity = no. of moles / 1 L of solution
put values in the formula
Molarity = 4/ 1 L of solution = 4 M
So the molarity of solution is 4 now if we add 2 mole more sugar to the same amount of sugar and amount of solution remain the same
now the no. of moles of sugar = 6 mole
So,
Use the Molarity formula
Molarity = no. of moles / 1 L of solution
put values in the formula
Molarity = 6 mol / 1 L of solution = 6 M
So the correct option is b.
Answer:
long range order
Explanation:
A crystal consists of atoms, ions or molecules having both short range and long range order. The atoms, ions or molecules are arranged in a regular pattern throughout the lattice both at immediate vicinities and across the entire crystal structure.
This order accounts for the definite shape and unique properties of crystals which include their sharp melting and boiling points which distinguishes them from amorphous substances.
That is because the fluoride ion has 8 electrons and 9 protons while a lithium ion has 3 protons and 3 electrons. Therefore the lithium ion has fewer shells than flouride